

SADFE 2016 Keynote Presentation

SEP. 23, 2016

Digital Forensics Trends in Japan

Professor, Tokyo Denki University Ryoichi Sasaki sasaki@im.dendai.ac.jp

1

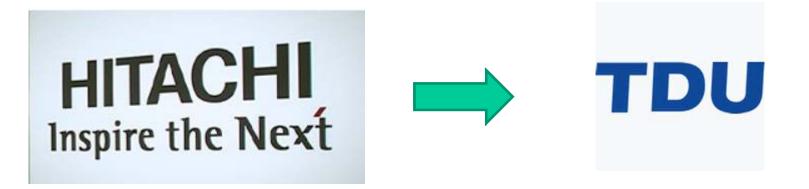
Table of contents

- 1. Self Introduction
- 2. Early History of Digital Forensics in Japan
- 3. Activities on Institute of Digital Forensics
- 4. Introduction of Main Research in Japan
- 5. Digital Forensics Education in Japan
- 6. Major Case Involving Digital Forensics in Japan
- 7. Future Directions

My Profile (1)

Dr. Sasaki received his B.S. Degree in health science and Ph.D Degree in system engineering from the University of Tokyo in 1971 and 1981, respectively.

From April of 1971 to March of 2001, he was engaged in the research and research management related to systems safety, network management and information security at Systems Development Laboratory of Hitachi Ltd.



My Profile (2)

Dr. Sasaki started the study of information security in 1984. He is a co-inventors of the cipher named MULTI, which is the Japanese Digital Satellite Broadcast System standard.

In 2001, he moved from Hitachi ltd. to Tokyo Denki University

Profile of Dr. Ryoichi Sasaki

- (1) Professor, <u>Tokyo Denki University</u>(TDU)
- (2) Director of Cyber Security Institute of TDU
- (3) Cyber Security Advisor, NISC (National Center of Incident readiness and Strategies for Cyber Security Information Center, Cabinet Office, Government of Japan)
- (4) Visiting Professor, National Institute of Informatics
- (5) Former General Chair, Japan Society of Security Management
- (6) General Chair of Institute of Digital Forensics

University Overview

- Tokyo Denki University is a private university for future engineers located in Adachi, Tokyo, Japan.
- Our founding spirit is "Respect for Practical Studies".
- The predecessor of the school was founded in 1907. It was chartered as a university in 1949.

First President of our University

Dr. Niwa and Origin of FAX

Dr. Niwa, the first president of our university, invented an original means of transmitting information, which later became known as "facsimile" or "Fax".

Profile of Dr. Ryoichi Sasaki

- (1) Professor, Tokyo Denki University(TDU)
- (2) Director of Cyber Security Institute of TDU
- (3) Cyber Security Advisor, NISC (National center of Incident readiness and Strategies for Cyber Security Information Center, Cabinet Office, Government of Japan)
- (4) Visiting Professor, National Institute of Informatics
- (5) Former General Chair, Japan Society of Security Management
- (6) General Chair, Institute of Digital Forensics(IDF)

Table of contents

- 1. Self Introduction
- 2. Early History of Digital Forensics in Japan
- 3. Activities on Institute of Digital Forensics
- 4. Introduction of Main Research in Japan
- 5. Digital Forensics Education in Japan
- 6. Major Case Involving Digital Forensics in Japan
- 7. Future Directions

Early History on Digital Forensics in Japan

In 1996: The Japan National Police Agency (NPA) set up a section tasked with the mission of dealing with digital forensic issues triggered by the <u>Subway Sarin Incident</u>.

In 2003 : The first company formed to deal exclusively with digital forensics was established in Japan.

In 2004: The institute of Digital Forensics (IDF) was established.

Background

On March 20, 1995, Aum Shimrikyo cult members released sarin gas in Tokyo's subway trains, killing 13 passengers and station workers, and injuring some 6,000.

Background

In Aum Shirikyo, there were many educated members who have high level knowledge with regards to information technologies.

They used cryptography including public key cipher to protect their data files.

=> Japanese National Police Agency set up the section having the mission to handle the digital forensic issue.

Shokou Asahara Aum Shinrikyo founder

Early History on Digital Forensics in Japan

In 1996, The NPA began efforts to deal with the digital forensic issues related to the Subway Sarin Incident.

In 2003 : The first company formed to deal exclusively with digital forensics was established in Japan.

In 2004: <u>The Institute of Digital Forensics(IDF) was</u> established.

Institute of digital forensics(IDF)

The IDF is a non-profit organization (NPO) dedicated to spreading and promoting digital forensics, as well as contributing to the realization of a healthy information technology (IT) society.

IDF membership includes security researchers, digital forensic engineers, people concerned with digital forensic law and law enforcement, as well as digital

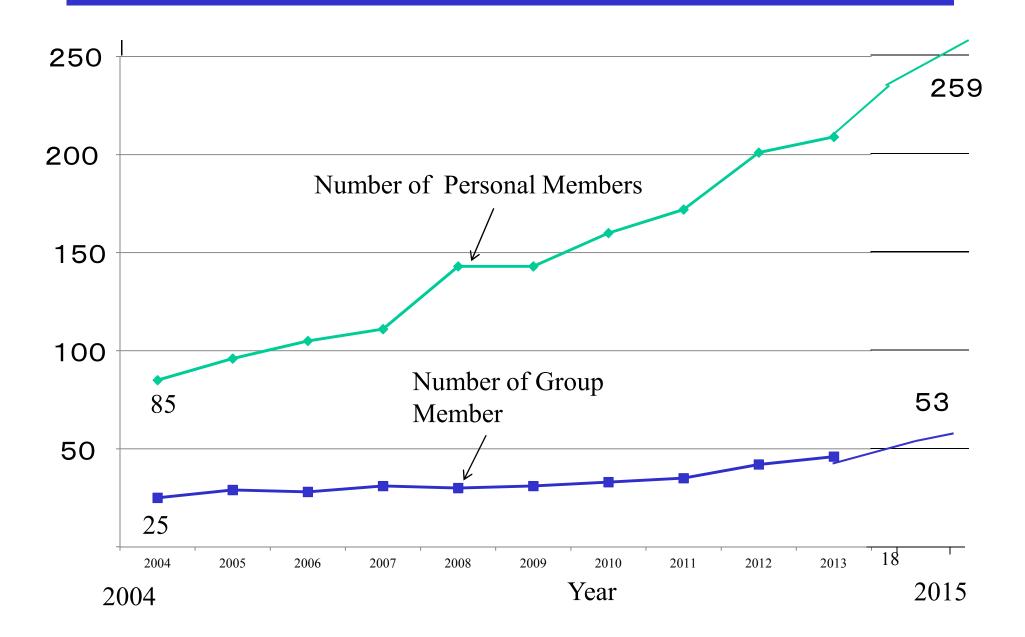
forensic users.

Main Member of IDF at Formation

研究会構築・・・ 会長鉄野 致空の趣旨 対容領域 定赦 役員構成 会長鉄野 指報 位キュリティ大学院大學 学長 副学長 夜富 震 運 運 構 統一部 指報 位キュリティ大学院大學 副学長 General Chair: 理事 林 統一部 指報 ビキュリティ大学院大學 副学長 医の加大学大学院 法務研究科・法学部取得、	The Institute	フォレンジック研究会 of Digital Forensics	▼ 予 移動 リンク × ●
理事 林 紘一郎 情報ビキュリティ大学院大学 副学長 佐々木 良一 東京電機大学 工学部 情報メディア学科 教授 周川 賢羊 新潟大学大学院 工学部 法政コミュニケーション学科 助手 萩原 栄幸 (け)コンピュータンフトウェア著作権協会 技術顧問 舟橋 (B) 未工学研究所 参与 町村 泰貴 南山大学大学院 工学研究科研廣情報ビッター 助教授 上原 哲太郎 京都大学大学院 工学研究科研廣情報ビッター 助教授 ド原 哲太郎 京都大学大学院 工学研究科研廣情報ビッター 助教授 村山 園範 国立国際医康センター 医療情報システム開発研究部 部長 古川 (ช)台 慶應裏塾大学大学院活務研究科 教授 石井 正宏 (休) UBIC 代表取締役社長 内本 (朱) マーア・インサイト・セキュリティ(松) 代表取締役社長 内本 (火) ロシーン・ (城) 個人情報保護対策室 室長 向井 徹 シーア・インサイト・セキュリティ(松) 代表取締役社長 伊藤 一泰 (休) 金融ジステム総合研究所 取締役 ビ産 医 内市 太郎 (株) 金融ジステム総合研究所 取締役 丁水 満家 (先) 小学・ ブンターブライズリスクサービンター 小山 満彦 (B) トーマツ エンターブライズリスクサービス部 シニアマネージャー	役員構成 会長 辻井 重男	情報セキュリティ大学院大学、学長	
監事 丸山 満彦 (監)トーマツ エンタープライズリスクサービス部 シニアマネージャー	理事 林紘一年 一 一 一 一 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本	情報セキュリティ大学院大学 副学長 東京電機大学 工学部 情報メディア学科 教授 弁護士 新潟大学法学部 法政コミュニケーション学科 助手 (注) コンピュータソフトウェア著作権協会 技術顧問 (財) 未来工学研究所 参与 南山大学大学院 法務研究科 教授 干葉大学 法経学部 助教授 京都大学大学院 工学研究科附属情報センター 助教授 国立国際医療センター 医療情報システム開発研究部 部長 慶應義塾大学大学院法務研究科・医学部 助教授 兼 TM総合総合法律事務所 弁護士 (株) UBIC 代表取締役社長 (株) NTTデータ ナショナルセキュリティビジネスユニット長 (株) マォーカスシステムズ 新規事業推進室 室長 シーア・インサイト・セキュリティ(株) 代表取締役社長 (株) 金融システム総合研究所 取締役 日本ヒューレット・パッカード(株) 個人情報保護対策室 室長	Shigeo Tsujii (Security Researcher) (President of Institute of Information Security) Vice Chair : Kiyoshi Yasutomi (Lawyer)
	監事 丸山 満彦	(監)トーマツ エンタープライズリスクサービス部 シニアマネージャー	

Table of contents

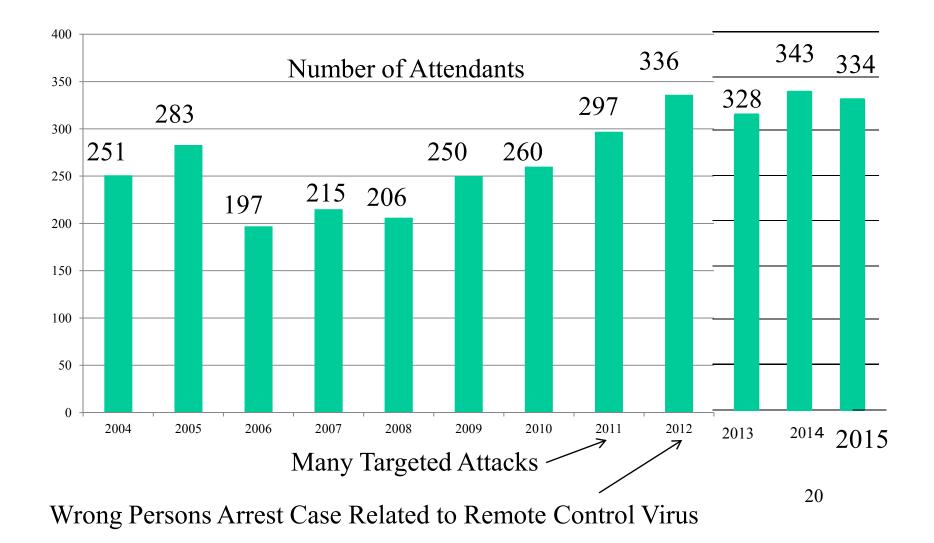
- 1. Self Introduction
- 2. Early History of Digital Forensics in Japan
- 3. <u>Activities on Institute of Digital Forensics</u>
- 4. Introduction of Main Research in Japan
- 5. Digital Forensics Education in Japan
- 6. Major Case Involving Digital Forensics in Japan
- 7. Future Directions


Main IDF Activities

- In 2004: <u>The IDF was established.</u> The first digital forensic conference, which was called the Digital Forensic Community, was held in December of this year.
- In 2006: The Encyclopedia of Digital Forensics was published by Nikka Giren under the supervision of the IDF.
- In 2011: The first Digital Forensic Introductory Training hosted by IDF was conducted.
- In 2012: The Guideline for Maintaining Evidence (Version 2) was released by the IDF.
- In 2015: The Revised Encyclopedia of Digital Forensics was published by Nikka Giren under the supervision of the IDF.

17

IDF Membership Growth


Main IDF Activities

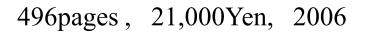
- In 2004: The IDF was established. The <u>first digital forensic conference</u>, <u>which</u> <u>was called the Digital Forensic Community</u>, <u>was held in December of</u> <u>this year</u>.
- In 2006: The Encyclopedia of Digital Forensics was published from Nikka Giren publisher with the supervision of IDF.
- In 2011: The first Digital Forensic Introductory Training hosted by IDF was held.
- In 2012: The Guideline for Maintaining Evidence (Version 2) was released by the IDF.
- In 2015: The Revised Encyclopedia of Digital Forensics was published by Nikka Giren under the supervision of the IDF.

19

Number of Attendants to the IDF Sponsored Conference

Main IDF Activities

- In 2004: The IDF was established. The first Digital Forensic conference, which is called the Digital Forensic Community was held in December of this year.
- In 2006: The <u>Encyclopedia of Digital Forensics was published</u> by Nikka Giren under the supervision of IDF.
- In 2011: The first Digital Forensic Introductory Training hosted by IDF was held.
- In 2012: The Guideline for Maintaining Evidence (Version 2) was released by the IDF.
- In 2015: The Revised Encyclopedia of Digital Forensics was published by Nikka Giren under the supervision of the IDF.


21

Encyclopedia of Digital Forensics

Edited by IDF

[Contents]

- Chapter 1 Basics of Digital Forensics
- Chapter 2 Current Status of Digital Forensics
- Chapter 3 History of Digital Forensics
- Chapter 4 Technologies of Digital Forensics
- Chapter 5 Digital Forensics and Law
- Chapter 6 Digital Forensics in Enterprise
- Chapter 7 Digital Forensics in Medicine
- Chapter 8 Practice of Digital Forensics
- Chapter 9 Tools for Digital Forensics
- Chapter 10 Future Trend on Digital Forensics

Main IDF Activities

- In 2004: The IDF was established. The first Digital Forensic conference, which is called the Digital Forensic Community was held in December of this year.
- In 2006: The Encyclopedia of Digital Forensics was published by Nikka Giren under the supervision of IDF.
- In 2011: <u>The first Digital Forensic Introductory Training hosted by IDF was held</u>.
- In 2012: The Guideline for Maintaining Evidence (Version 2) was released by the IDF.
- In 2015: The Revised Encyclopedia of Digital Forensics was published by Nikka Giren under the supervision of the IDF.

23

Digital Forensic Introductory Training

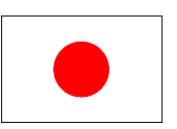
	Year	No. of Attendees*	No. that attended Special Courses **
First	2011	215	
Second	2012	370	
Third	2013	436	
Fourth	2014	250	20
Fifth	2015	252	42
Sixth	2016	326	56

* Two-hour courses

** One-day courses

Main IDF Activities

- In 2004: The IDF was established. The first Digital Forensic conference, which is called the Digital Forensic Community was held in December of this year.
- In 2006: The Encyclopedia of Digital Forensics was published by Nikka Giren under the supervision of IDF.
- In 2011: The first Digital Forensic Introductory Training hosted by IDF was held.
- In 2012: <u>The Guideline for Maintaining Evidence (Version 2) was released by</u> <u>the IDF</u>.
- In 2015: The Revised Encyclopedia of Digital Forensics was published by Nikka Giren under the supervision of the IDF.

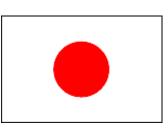

25

Digital forensics related events in Japan

Beginning in 2004, Japan-U.S. collaborative investigations on Digital forensic matters started between Tokyo Denki University etc. and Mississippi State University.

In 2005: Digital Forensics was selected as one of the most important 11 security technologies in a report published by the Secretary of Cabinet in Japan.

In 2008: The Fourth Digital Forensic International Conference, which is hosted by the International Federation for Information Processing, Technical Committee 11 (IFIP TC11), was held in Japan.


26

Digital forensics related events in Japan

Beginning in 2004, Japan-U.S. collaborative investigations on Digital forensic matters started between Tokyo Denki University etc. and Mississippi State University.

In 2005: Digital Forensics was selected as one of the most important 11 security technologies in a report published by the Secretary of Cabinet in Japan.

In 2008: The Fourth Digital Forensic International Conference, which is hosted by the International Federation for Information Processing, Technical Committee 11 (IFIP TC11), was held in Japan.

Table of contents

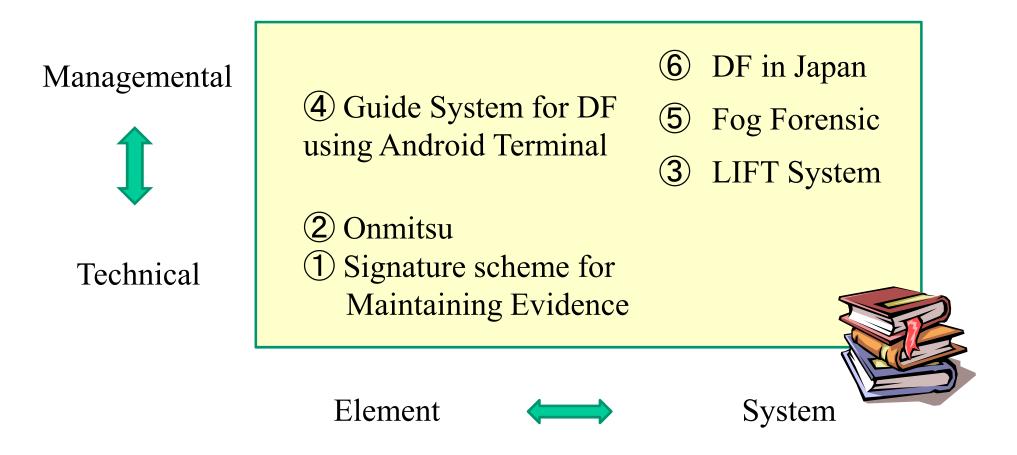
- 1. Self Introduction
- 2. Early History of Digital Forensics in Japan
- 3. Activities on Institute of Digital Forensics
- 4. Introduction of Main Research in Japan
- 5. Digital Forensics Education in Japan
- 6. Major Case Involving Digital Forensics in Japan
- 7. Future Directions

Articles Related to DF in Japan

• We searched CiNii to find the articles in Japan related to "Digital Forensics".

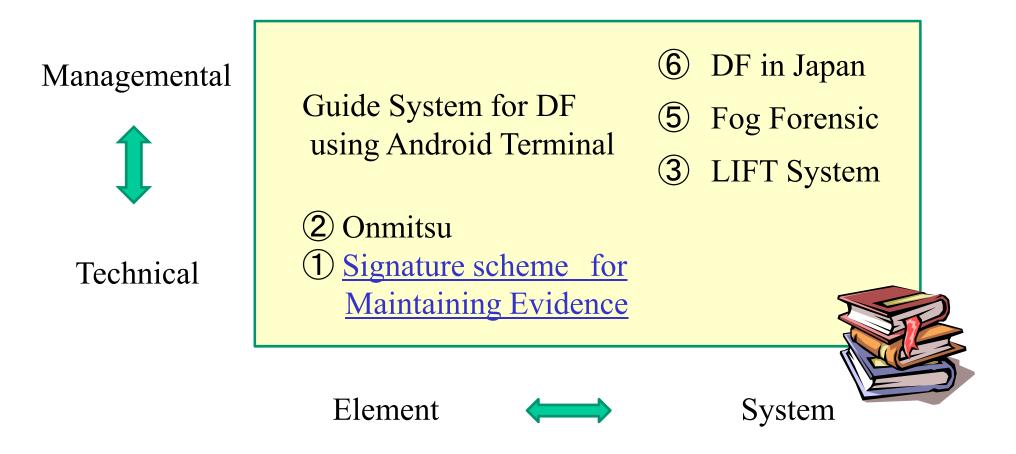
CiNii is a searchable database service containing academic information on articles, books, etc in Japan.

Number of Articles According to Year


Year	Number of Articles
2006	4
2007	6
2008	11
2009	13
2010	2
2011	7
2012	4
2013	11
2014	7
2015	12
Total	78

Total Number of Articles: 78

Average Number of Articles: ~8


Japanese papers presented in other countries are not included in these figures.

Map of Our Main Studies

LIFT: Live and Intelligent Network Forensic Technologies

Map of Our Main Studies

LIFT: Live and Intelligent Network Forensic Technologies

Proposal and evaluation of safe and efficient log signature scheme for the preservation of evidence

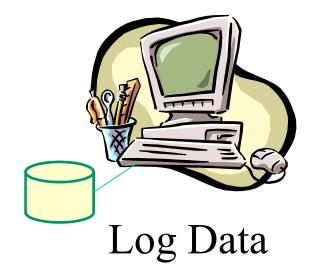
Naoki Kobayashi

Dep. of Information Systems and Multimedia Design Tokyo Denki University, 5 Senju-Asahi-cho, Adachi-Ku, Tokyo 120-8551, Japan Ryoichi Sasaki

Dep. of Information Systems and Multimedia Design Tokyo Denki University, 5 Senju-Asahi-cho, Adachi-Ku, Tokyo 120-8551, Japan

Abstract— In recent years, the requirements for the preservation of evidence have increased for important log data, such as the data in the planned common number identification system in Japan. One of the proposed evidence preservation methods, the hysteresis signature scheme, reflects previously summarized data with a new digital signature of the log data. However, it takes a long time for this scheme to verify signatures. Therefore, we propose a new hybrid signature scheme that is based on the existing united signature scheme and the hysteresis signature scheme. In evaluations under various conditions, we ineffective when the numbers of generations and verifications of signatures are the same.

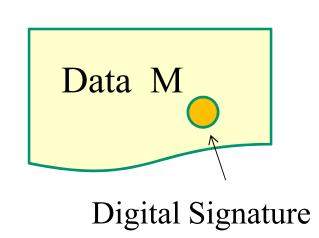
We propose the hybrid signature scheme and compare it with conventional schemes, including the hysteresis signature scheme.


As a result, we show that our proposed scheme is the most effective among them. In a survey of related papers, such as [7][8][9][10][11], a method having the same function as our hybrid signature scheme has not yet been proposed.

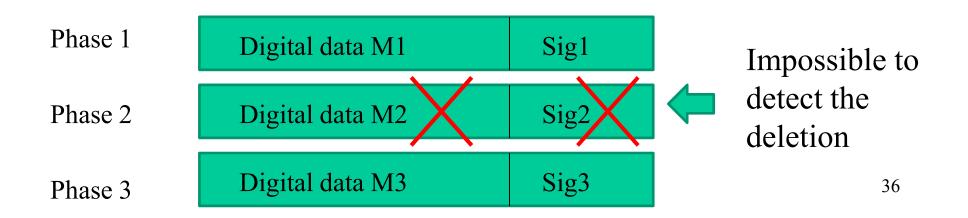
CFSE2014 held in Conjunction with COMPSAC 2014

CFSE: Computer Forensics in Software Engineering COMPSAC 2014: The 38th IEEE Computer Society International Conference on Computers, Software & Applications

Background


• In recent years, the requirements for preserving important log data as evidence have increased.

Basic Scheme and Its Issue


- As a scheme to detect the tampering of digital data, a digital signature scheme is generally used.
- This mechanism is a combination of the public key cipher and the hash function.

Sig = S(h(M)) where Sig: Digital Signature h:Hash function S: Public key encryption using a secret key

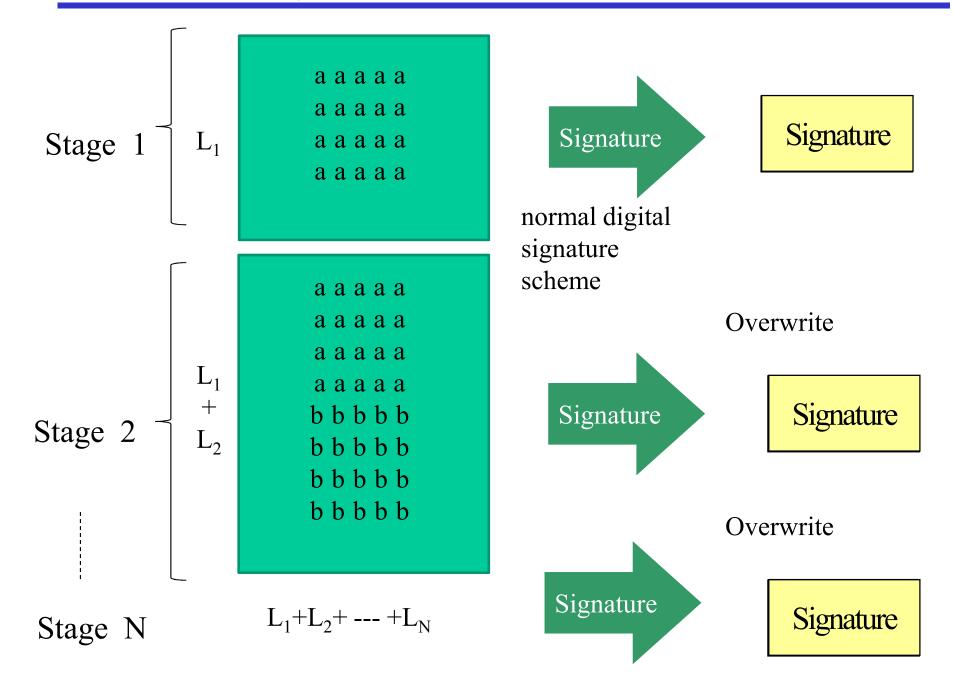
Basic Scheme and Its Issue

- However, it is impossible to detect log data tampering using a normal digital signature scheme because log data appears intermittently.
- If both the digital data and its related digital signature are deleted together, the deletion cannot be detected in the digital forensics verification phase.

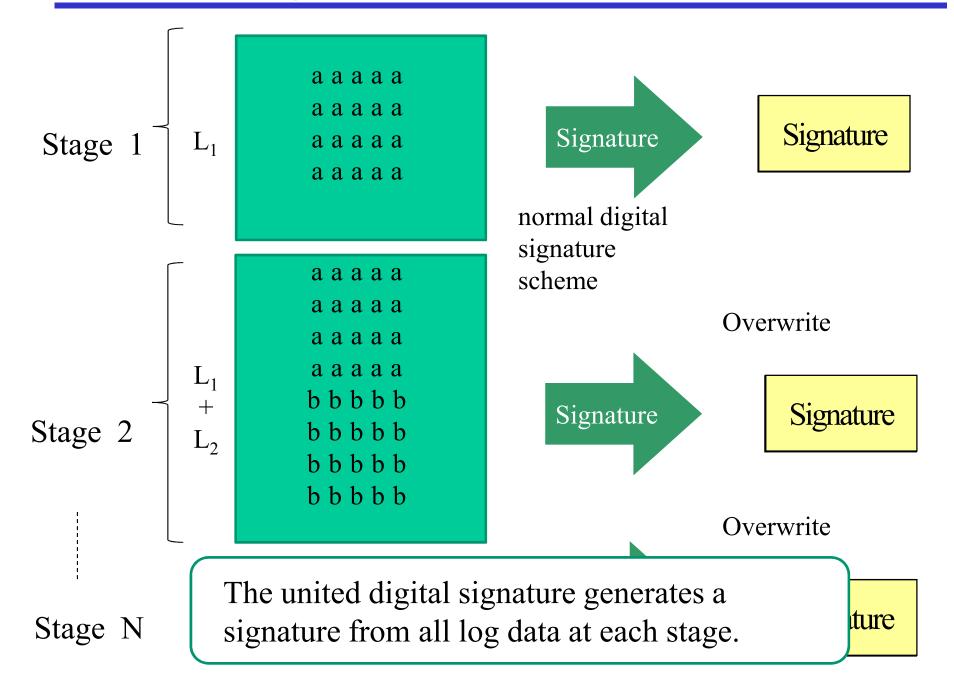
Proposed Scheme

We will now propose a <u>hybrid signature scheme</u> and compare it with two conventional methods.

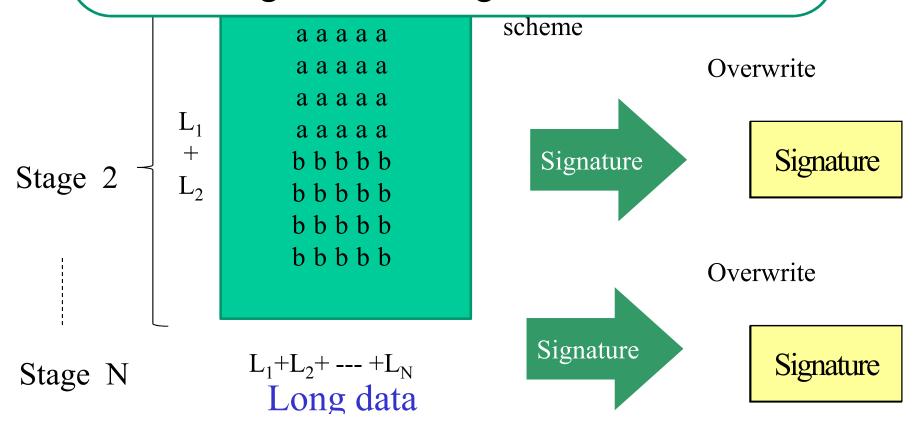
(1) United Signature Scheme

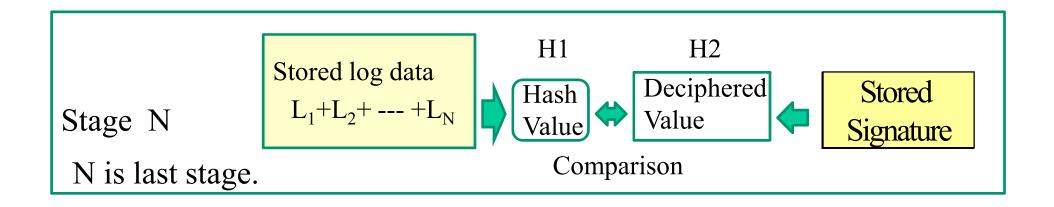

(Conventional Method)

(2) Hysteresis Signature Scheme


(Conventional Method)

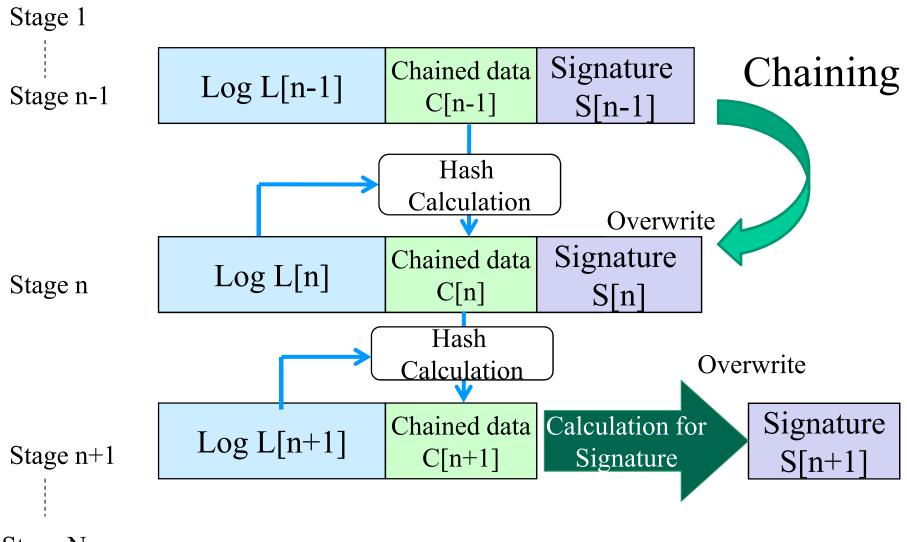
United Signature Scheme Generation Phase


United Signature Scheme Generation Phase

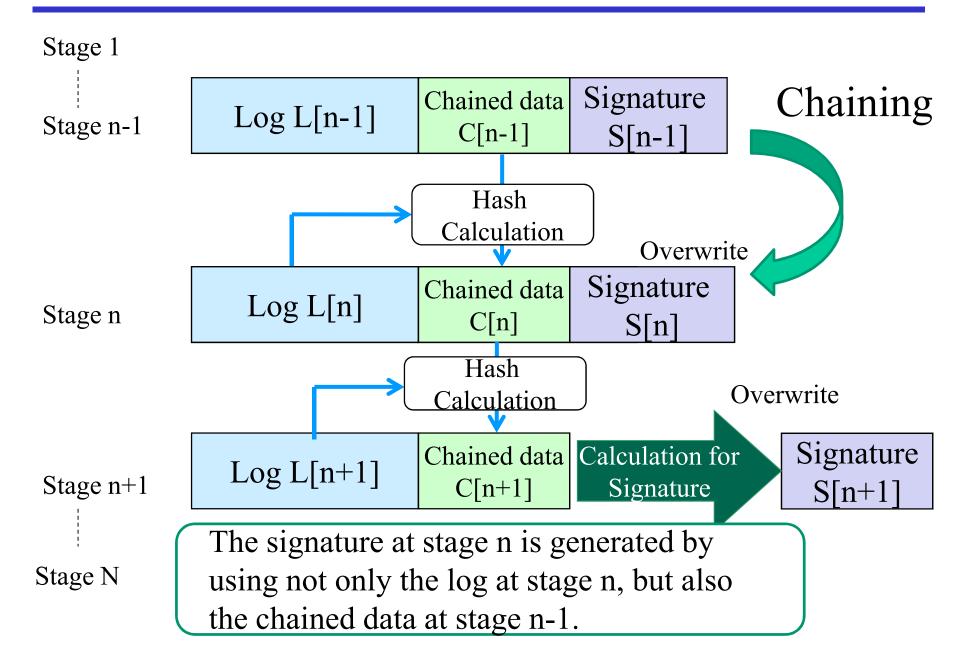

Generation Phase of United Signature Scheme

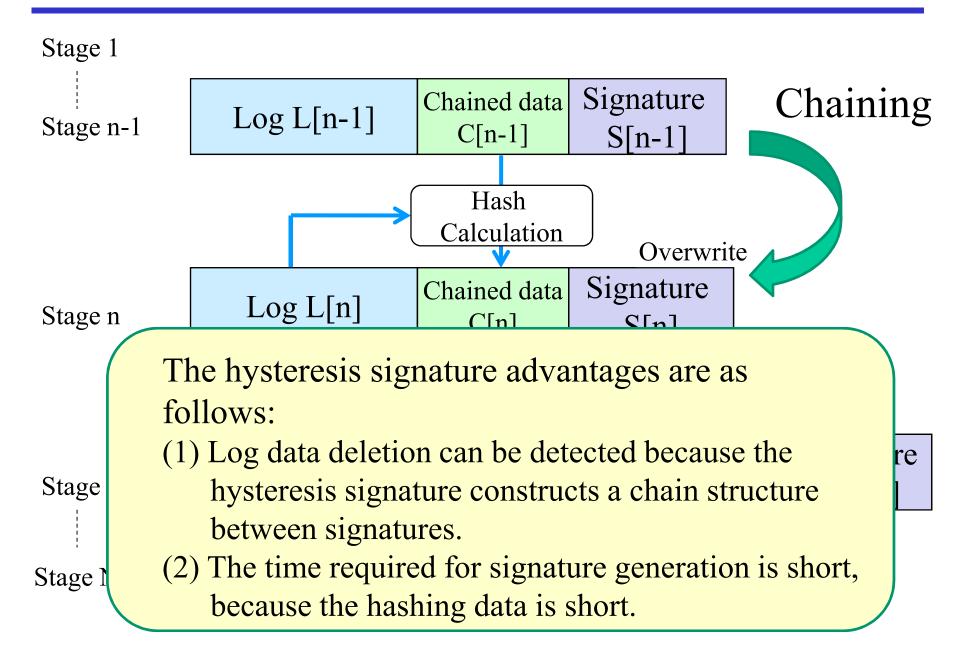
The disadvantages of this scheme are that calculations are needed at each stage to
Sta generate the signature, and it takes a long time to generate the signature when the data for hashing becomes long.

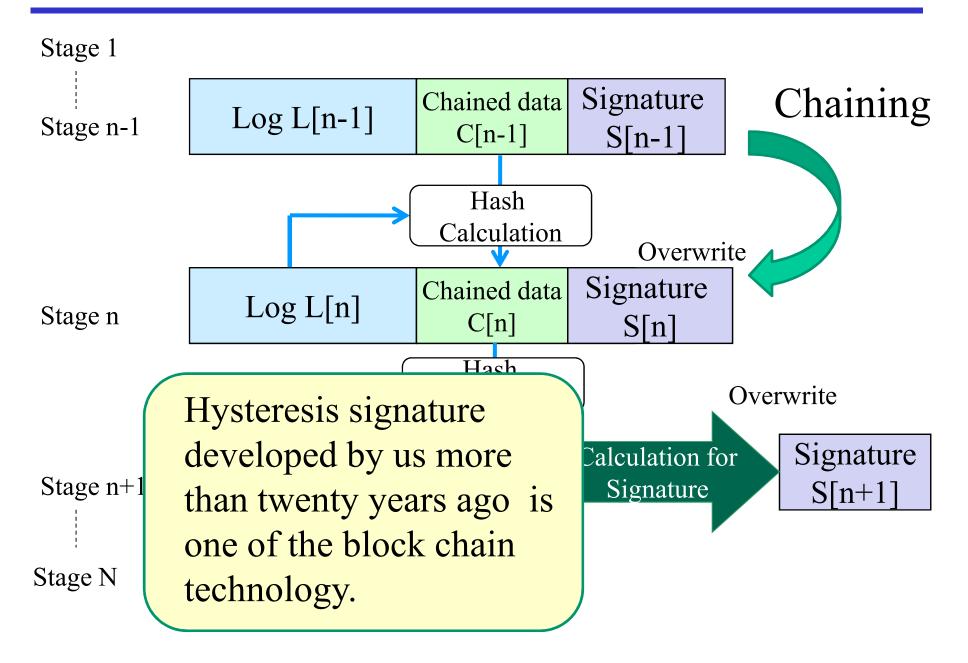
ure

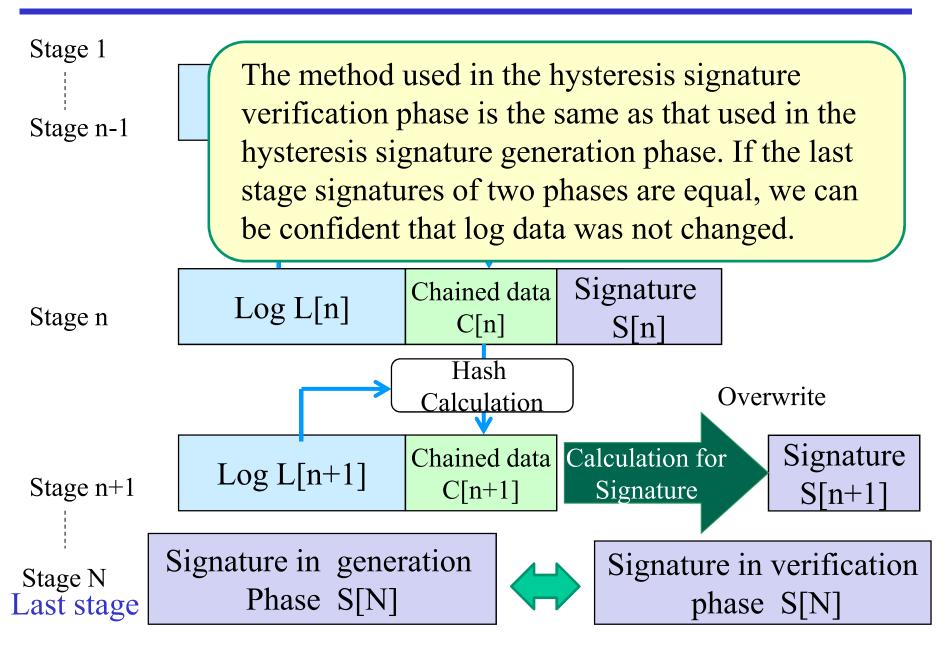


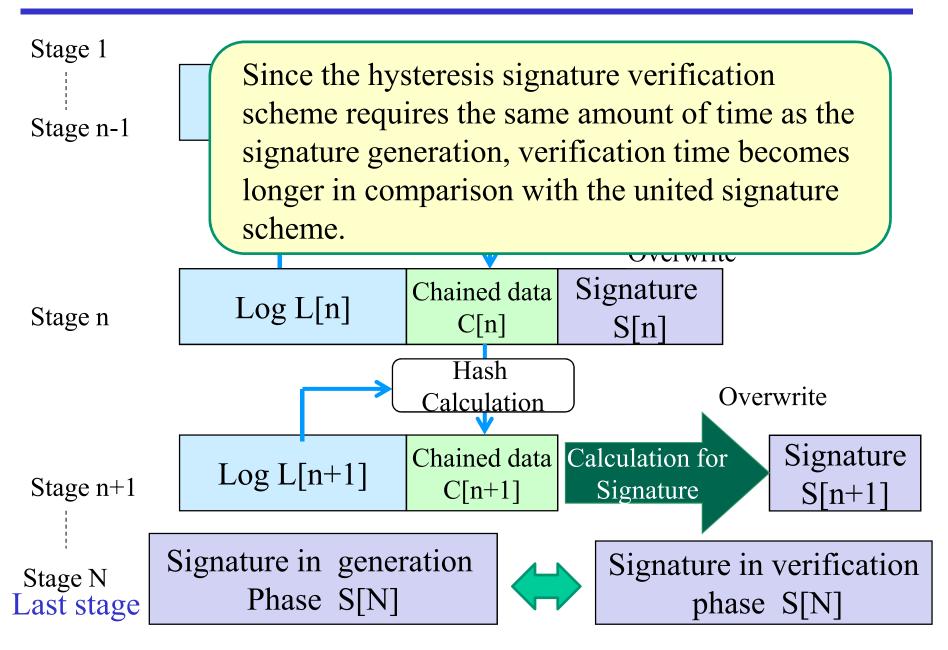
United Signature Scheme Verification Phase

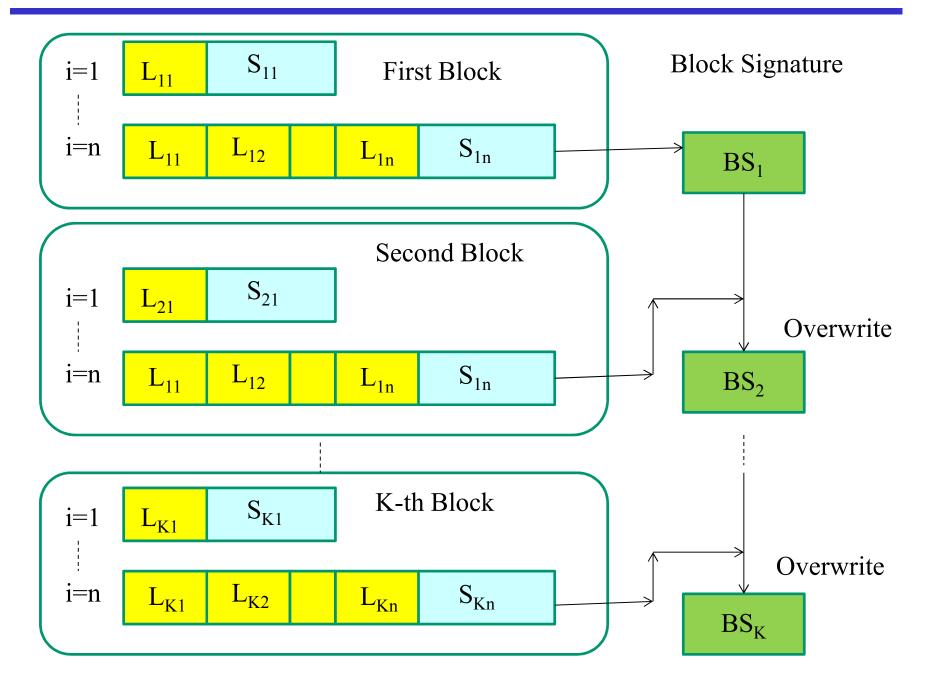


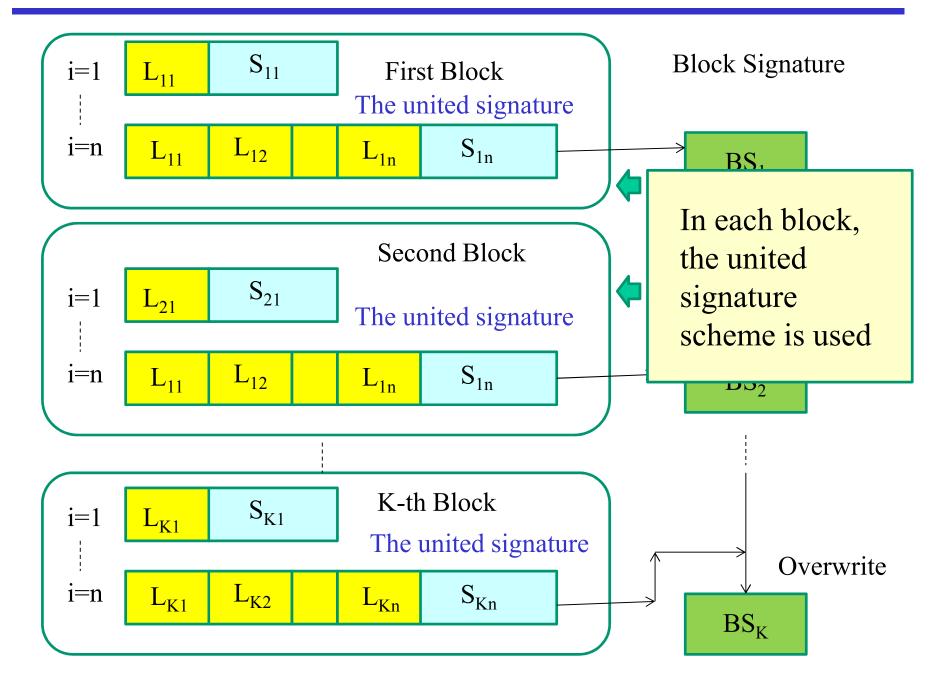

For united signature scheme verification, it is only necessary to check the last stage.

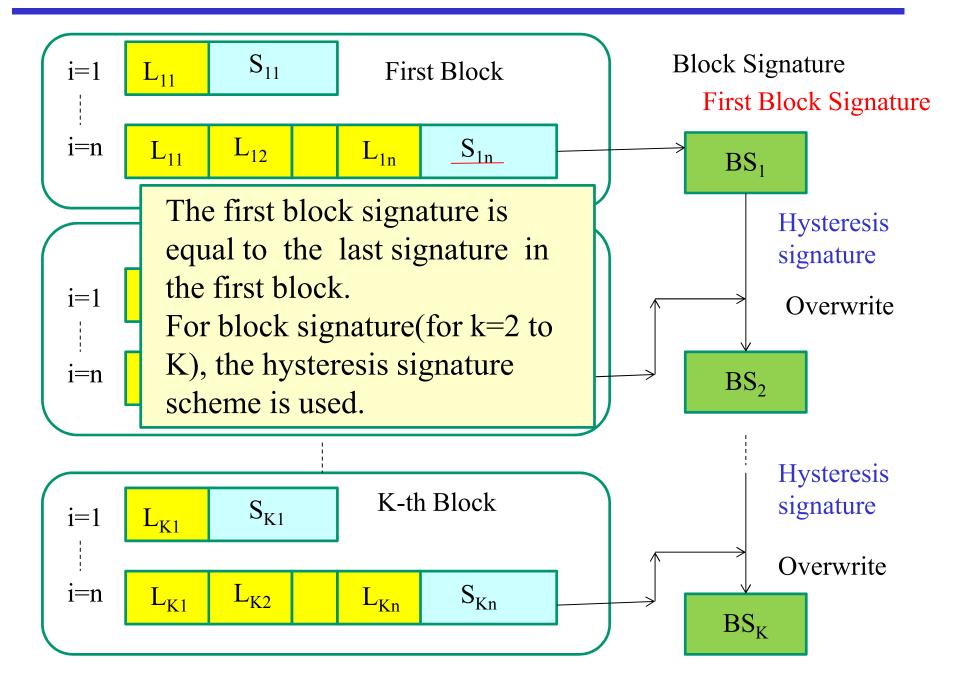

Therefore, reductions in the computation time required for verification can be expected.



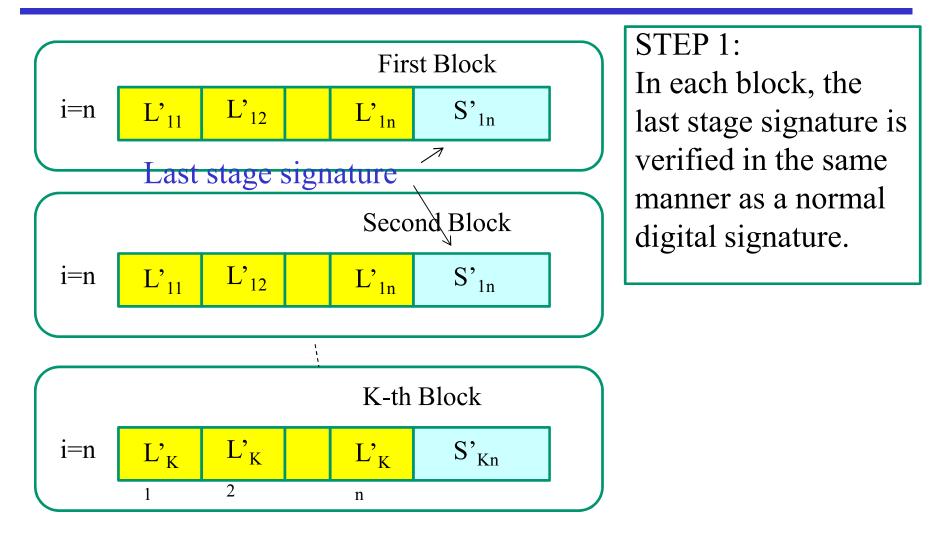

Stage N

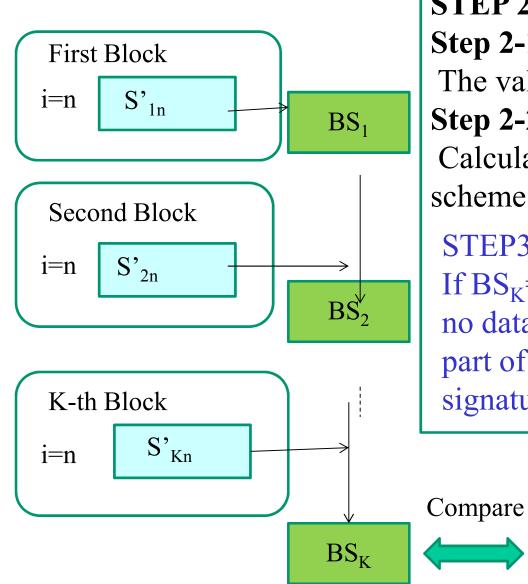






Requirements for the proposed scheme


- **Requirement 1**: The verifier can detect tampering to any part of the log data.
- **Requirement 2**: The verifier can detect log data deletions even if part of the log data and the related digital signature are deleted together.
- **Requirement 3**: The total calculation time for signature generation and log data verification is the shortest among all schemes.



Hybrid Signature Scheme Verification Phase

H1=Kp(S'_{kn}), where Kp() represents the decryption function using the public key cipher and the public key Kp. H2=h(L'_{k1}, L'_{k2}, ..., L'_{kn})

Hybrid Signature Scheme Verification Phase

STEP 2: Step 2-1: For first block, The value of S'_{1n} is given to BS_1 **Step 2-2**: For k=2, ..., K Calculate BS_k using hysteresis scheme.

STEP3:

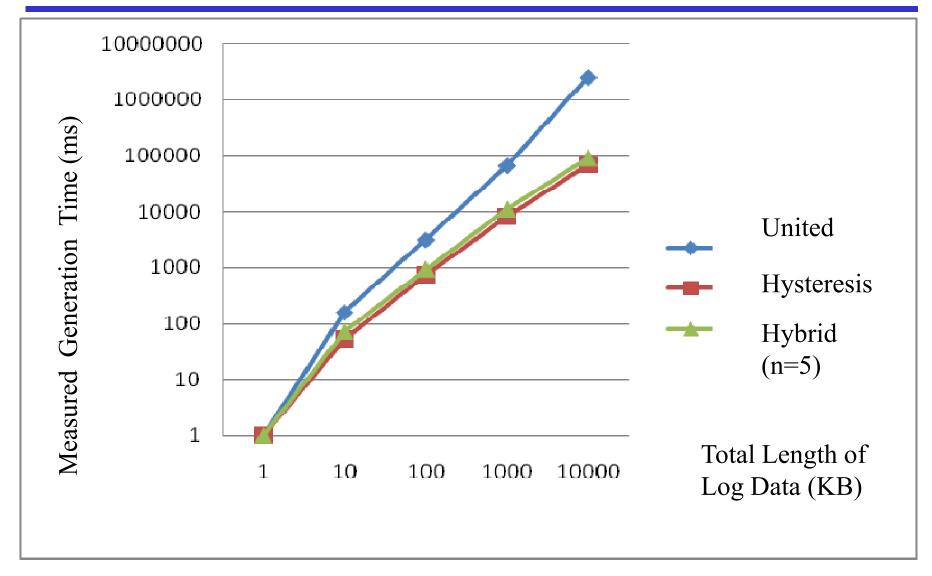
If $BS_{K} = BS'_{K}$, it can be confirmed that no data tampering has occurred and no part of the log data or the related signature has been deleted.

BS'_K

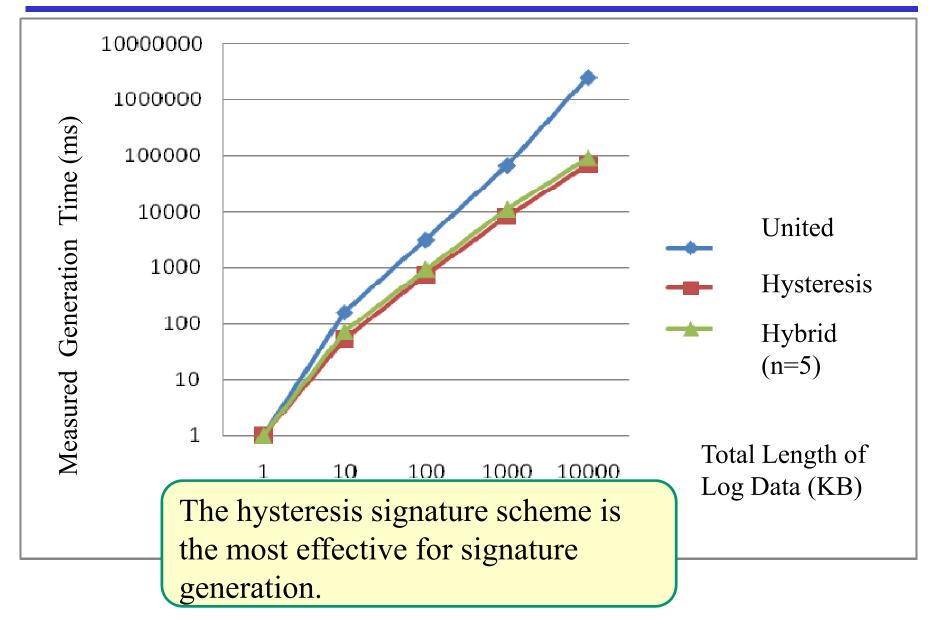
Experimental Environment

To verify that the proposed scheme is the most effective among the three schemes, we measured the generation times and verification times.

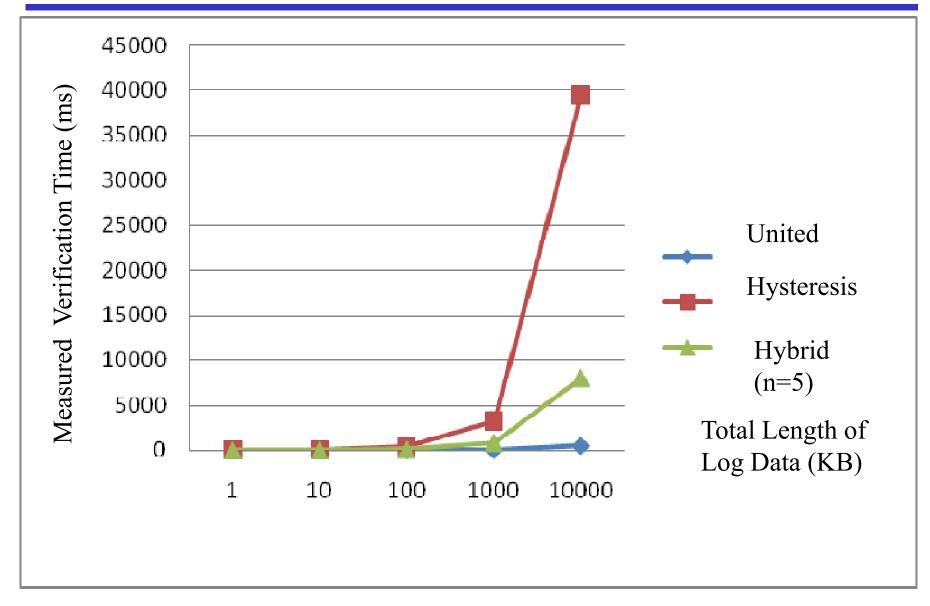
- (1) CPU: Intel Core i5
- (2) OS: Windows 7 Enterprise 64-bit
- (3) RAM: 2 [GB]
- (4) SSD: 120 [GB]

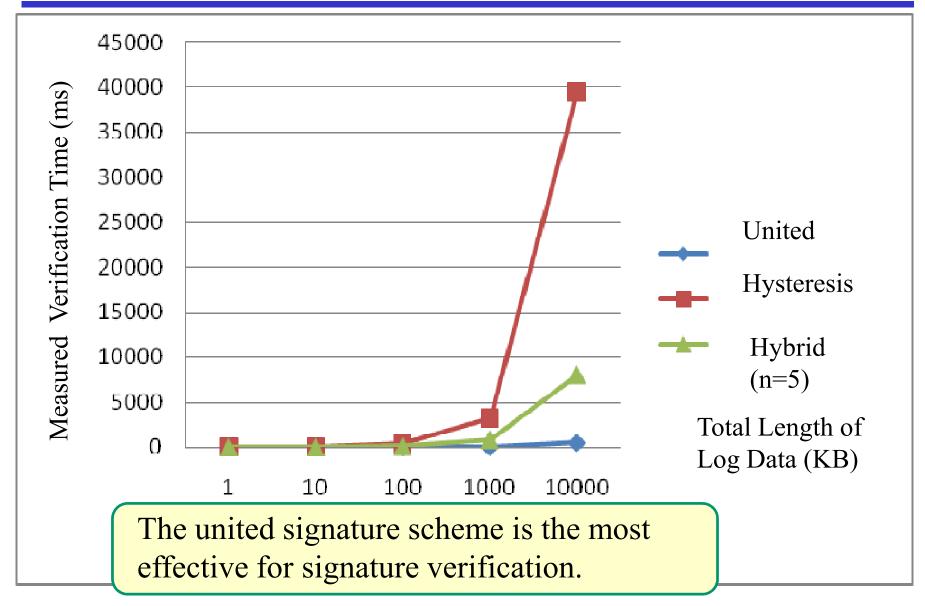

(5) Development language of the computer program for the experiment: C#

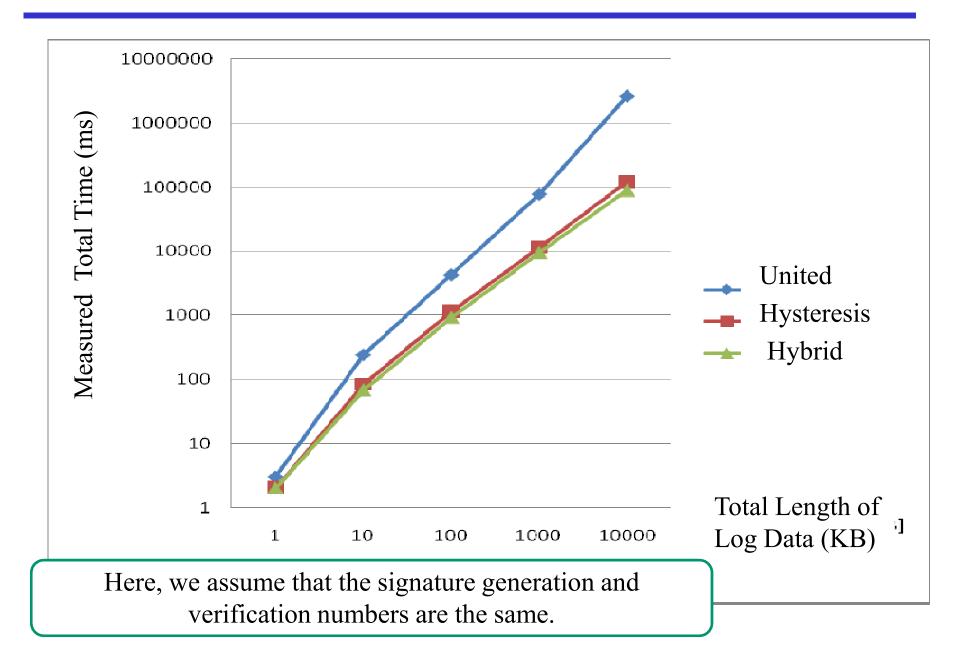
Parameter values

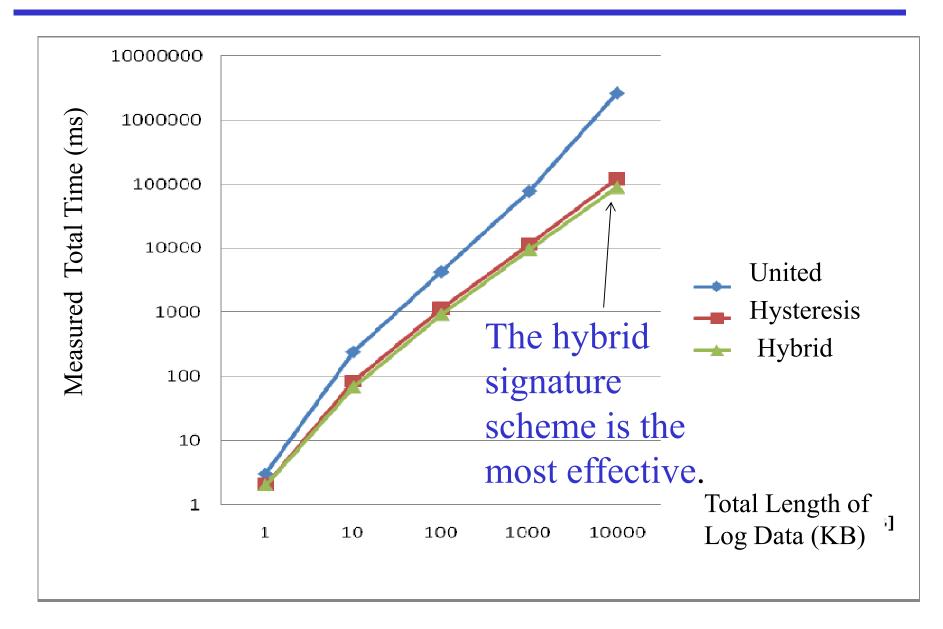


1	K: Number of blocks	200
2	n: Number of log data in each block	5
3	L: Length of each log data	1 KB
4	N: Number of log data	1000
5	L*N	1 MB


Measured times for generating signatures with the three schemes


Measured times for generating signatures with the three schemes

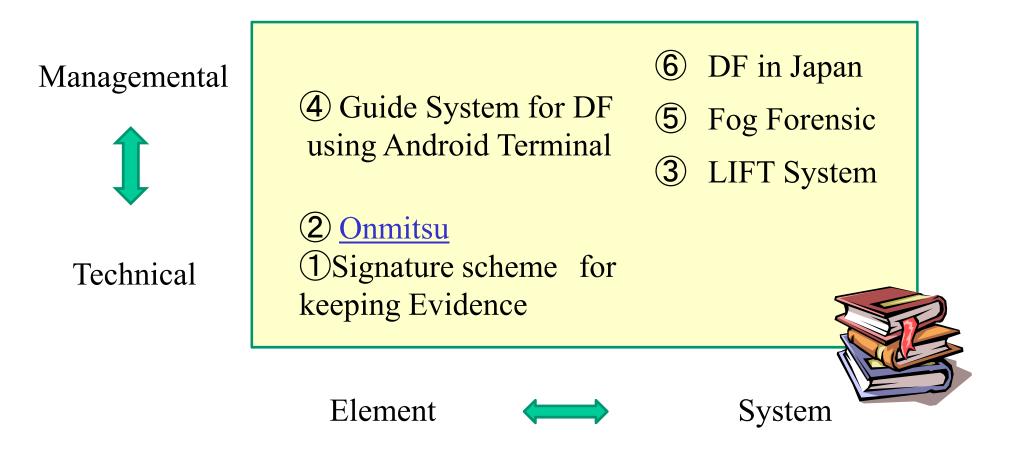

Measured times for verifying signatures with the three schemes


Measured times for verifying signatures with the three schemes

Measured total computation times with the three schemes

Measured total computation times

Evaluation Results


The proposed scheme satisfies the three requirements shown below:

Requirement 1: As described in the hybrid signature scheme verification phase, the verifier is able to detect any log data tampering.

Requirement 2: As described in the hybrid signature scheme verification phase, the verifier can also detect any log data deletions, even if a part of the log data and its related digital signature are deleted together.

Requirement 3: As described in the evaluation results, the total calculation time of the hybrid scheme for log data signature generation and verification is generally the shortest among all three schemes.

Map of Our Main Studies

LIFT: Live and Intelligent Network Forensic Technologies

TITLE: METHOD FOR ESTIMATING UNJUST COMMUNICATION CAUSES USING NETWORK PACKETS ASSOCIATED WITH PROCESS INFORMATION

a, <mark>R</mark> yoichi Sasaki
nal Conference on Information /ber Forensics (InfoSec2014)
ľ

Abstract:

The number of attacks based on advanced persistent threat (APT), which is a set of stealthy and continuous computer hacking processes, has been increasing around the world. To cope with such attacks, a management system that stores and analyses log information in order to identify unjust packet network communications has come to be used for threat detection in equipment equipped with functions such as security information and event management (SIEM). However, while it is possible to identify personal computers (PCs) engaging in unjust communication using this system,

Study Background

- In recent years, attacks have become increasingly advanced.
- It becomes important to identify a cause of unjust communication.

Study Objective

Packet Status

02.113.232.104	1 < 07767 76
192.168.137.69	54 http > 49
62.113.232.164	54 49446 > h
62.113.232.164	54 49447 > h
192.168.137.255	92 Name quer
192.168.137.69	54 http > 49
64.4.11.42	363 GET / HTT
192.168.137.69	714 HTTP/1.1
64.4.11.42	54 49437 > ł
178.250.245.198	66 49450 > ł
192.168.137.69	66 http > 49
178.250.245.198	54 49450 > h
178.250.245.198	779 GET /V7Mc
192.168.137.69	54 http > 49
192.168.137.69	207 HTTP/1.1

Running

processes

While it is possible to identify personal computers engaging in unjust communication by monitoring the packet communication, it is often very difficult to determine the process used by the malware to cause the PC to engage in unjust communication.

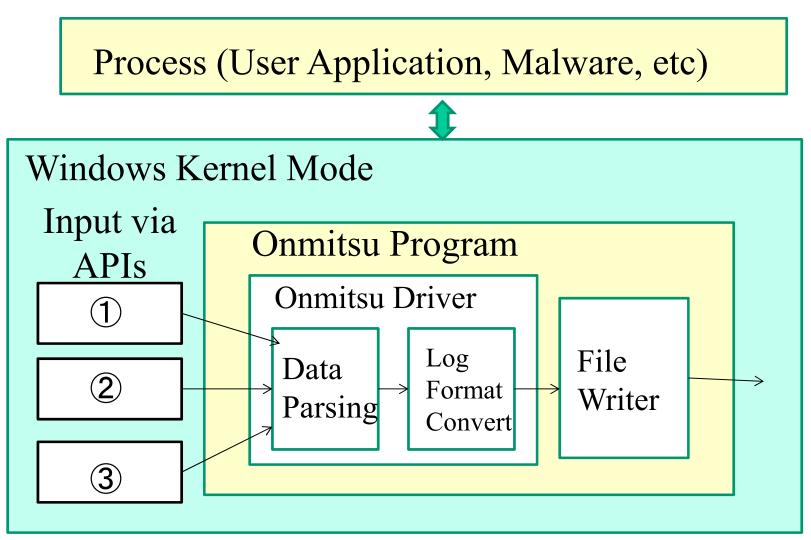
Study Objective

62.113.232.164	54 49446 > http [ACK] Seq=231 Ack=154 Win=131328 Len=0
62.113.232.164	54 49446 > http [FIN, ACK] Seq=231 Ack=154 Win=131328 Len=0
192.168.137.69	54 http > 49446 [FIN, ACK] Seq=154 Ack=231 win=15680 Len=0
62.113.232.164	54 49446 > http [ACK] Seq=232 Ack=155 Win=131328 Len=0
62.113.232.164	54 49447 > http [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
192.168.137.255	92 Name query NB WPAD<00>
192.168.137.69	54 http > 49446 [ACK] Seq=155 Ack=232 Win=15680 Len=0
192.168.137.69 64.4.11.42	54 http > 49446 [ACK] Seq=155 Ack=232 win=15680 Len=0 363 GET / HTTP/1.1

We would like to identify the running process in the PC connected to packet.

STUDY OBJECTIVE

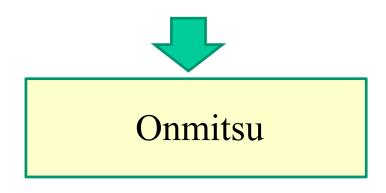
To answer the requirement,


IN 2014, WE DEVELOPED THE LOGGER DRIVER PROGRAM NAMED <u>"ONMITSU"</u>.

Onmitsu?

- Have you heard of "Ninja?"
- Ninja were covert agents in feudal Japan.
- A Ninja who engaged in an intelligence activity was called an <u>"Onmitsu"</u>.

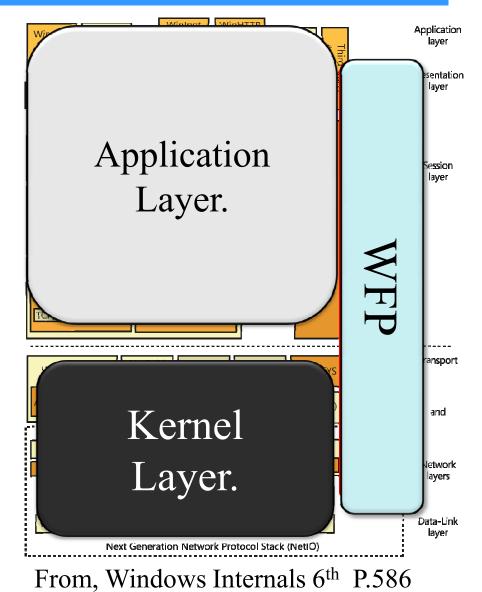
Onmitsu Structure


This program was written by C++, and the total program length is approximately 1K steps.

APIs for Input to Onmitsu

- APIs for Input.
 - Windows Filtering Platform(WFP) ①

- ③


- PsSetCreateProcessNotifyRoutineEx 2
- PsSetLoadImageNotifyRoutine

Onmitsu Logic

To obtain network information

- <u>Windows Filtering</u> <u>Platform (WFP)</u>
 - It is generally used to create a firewall.
 - The Onmitsu driver gets Network Information when the connection status is "ESTABLISHED".

Onmitsu Logic

- Can retrieve these data from <u>WFP</u>.
 - Source IP address and port number.
 - Destination IP address and port number.
 - Communication data.

Onmitsu Logic

To obtain process information

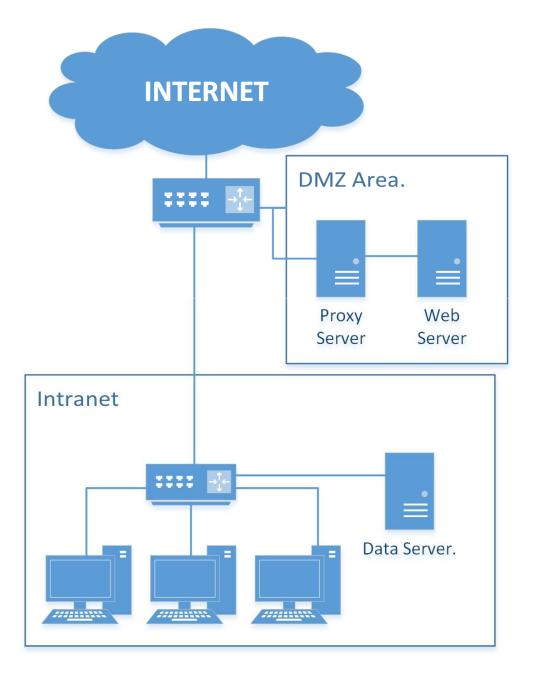
- <u>PsSetCreateProcessNotifyEx</u>
- <u>PsSetLoadImageNotifyRoutine</u>

These APIs, which are Windows kernel mode functions, are used by Onmitsu to register the callback functions that detect process loading, exiting, or module loading.

Onmitsu Recordable Items

Actions	Data			
	Time			
	Process ID			
Launch of Process	Parent Process ID			
	Executable Image file path.			
	Command Line			
End of Process	Time			
	Time			
Load a module.	Process ID			
	Module Image file path.			
	Time			
	Process ID (Ordered the operation.)			
	Source IP Address.			
Established a connection.	Source Port Number.			
	Destination IP Address.			
	Destination Port Number.			
	Protocol ID (Transport layer.)			

Onmitsu Logic


- Format of log:
 - Process Launch
 PROCESS_LAUNCH,(PID),(P_PID),(PATH),(CMDLINE)
 - Loading a module: PROCESS_MODLOAD,(PID),(MODULE_PATH)
 - IPv4 communicate:
 NETWORKV4,(PID),(L_ADR),(L_PORT),(R_ADR),(R_PORT),(PR OTO)
 - IPv6 communicate: NETWORKV6,(PID),(L_ADR),(L_PORT),(R_ADR),(R_PORT),(PR OTO)
 - Process Exit: PROCESS_QUIT,(PID)

Evaluation Items

- 1 Log accuracy
- 2 Log usefulness
- 3 Log volume
- 4 System load

Network environment

Microsoft Windows Vista or later is required for the client PC as for the OS version.

Evaluation Results ①

- Log accuracy evaluation method.
 - Compare the results of Onmitsu and Dumpcap.

There were no differences between the results obtained from Onmitsu and that obtained from Dumpcap

Log accuracy is enough.

A copy of your ADP TotalSource Payroll Invoice for the t viewing.

 Year:
 13

 Week No:
 08

 Payroll No:
 1

Example of Logs from Onmitsu

ΤΥΡΕ		PID	PARENT	CMDLINE	SRCPORT	DSTIP	DSTPORT
PROCESS_LAU	INCH	1832	1848		TESTUSER¥De: 88.pdf.exe	<pre>sktop¥SHARE¥invoice_</pre>	_928649039284232
PROCESS LAU	NCH	2068	1832			pData¥Local¥Temp¥zd1	ttuqbg.exe
PROCESS_LAU	NCH	1896	2068			pData¥Local¥Temp¥zd1	
PROCESS_LAU	INCH	2716	752	C:¥Program	Files¥Inter	net Explorer¥iexplore	.exe -Embedding
NETWORKV4		2716			49446	62.113.232.164	80
NETWORKV4		2716			49447	62.113.232.164	80
PROCESS_QUI	Т	2716					
NETWORKV4		1896			49450	178.250.245.198	80
	62.1	13.232.	164	54 49446 >	http [ACK] S	5eq=231 Ack=154 Win=1	31328 Len=0
		13.232.		54 49446 >		ACK] Seq=231 Ack=154	
		168.137		54 http > 4		ACK] Seq=154 Ack=231	
PID		13.232.		54 49446 >		5eq=232 Ack=155 Win=1	
2716		13.232. 168.137		54 49447 >	nctp [RST, / ery NB WPAD<(ACK] Seq=1 Ack=1 Win= 00>	o Len=o
2710		168.137				5eq=155 Ack=232 Win=1	5680 Len=0
	64.4	.11.42		363 GET / НТ		1	
		168.137	7.69 7	714 HTTP/1.1		(text/html)	
		.11.42	100	54 49437 >		Seq=1255 Ack=41924 Wi	
		250.245 168.137		66 49450 > 66 http > 4		Seq=0 Win=8192 Len=0 ACK] Seq=0 Ack=1 Win=	
PID		250.245				Seq=1 Ack=1 Win=13209	
1896		250.245				wZvlU7oe4s%2feLsgFA%2	
		168.137				5eq=1 Ack=726 Win=140	
	192.3	168.137	.69 2	207 HTTP/1.1	. 503 Service	e Unavailable (text/	html)

Evaluation Result (2)

ТҮРЕ	I	PID	PARENT	CMD	
PROCESS_LA	JNCH	1832	1848	C	From this log data, we can
PROCESS_LA	JNCH 2	2068	1832	C	see that the malware started and
PROCESS_LA	JNCH 🛛	1896	2068	(
PROCESS_LA	JNCH 2	2716	752	C	activated other programs in the
NETWORKV4		2716			tomporary folder
NETWORKV4		2716			temporary folder.
PROCESS_QU	IT 2	2716			
NETWORKV4	-	1896			In addition, we can see that the
PID 2716	62.113 192.16 62.113 62.113 192.16 192.16	3.232. 3.232. 58.137	164 7.69 164 164 7.255 7.69	5. 5. 5. 5. 92 54 363 G	malware attempted to start communications after Internet Exp was launched.
	192.16		.69 7	714 HT	TTP/1.1 302 Found (text/
PID 1896	178.25 192.16	50.245 50.245 58.137	7.69 5.198 5.198 7 7.69		The log of Onmitsu is useful

192.108.137.09

e can see that the mpted to start ons after Internet Explorer

Evaluation Results (3)

- Log file size.
 - Test duration using Onmitsu: 3 hours.
 - File size of Onmitsu log: 10,868,492 (10.36 MB)
 - With "zip" compression : 755,732 bytes (738.01 KB / 6.95%)
 - Estimated volumes for one year by simple calculation.
 - 2,205,651,767 bytes (2.05 GB)

Within acceptable volume size,because the volume of recent PC is around 1TB.

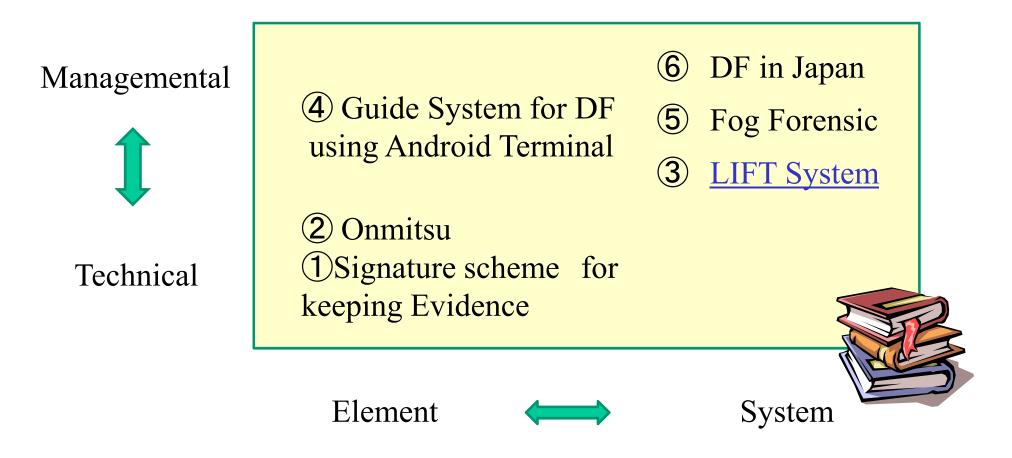
Evaluation Results (4)

- System load.
 - Futuremark PCMark 8 score:
 - Result:
 - Without Onmitsu: 4319 (101%)
 - With Onmits : 4264 (100%)

The system loading imposed by the Onmitsu driver is close to negligible.

Result

- We measured the log file obtained by Onmitsu and verified its usability.
- The log from Onmitsu is useful and there are no problems with regards to system load and log volume.



84

Resent Status

- Onmitsu has been introduced to the Caplogger software product manufactured by DIT company and is in actual field usage.
- 2. A study aimed at using Onmitsu for identifying the network PC that originated the intrusion has started.

Map of Our Main Studies

LIFT: Live and Intelligent Network Forensic Technologies

Development of intellectual network forensic system LIFT against targeted attacks

Kazuki Hashimoto,Hiroyuki Hiruma, Takashi Matsumoto, Kosetus Kayama, Yoshio Kaikizaki, Hiroshi Yamaki, Ryoichi Sasaki Tokyo Denki University 5 Senju Asahi-cho, Adachi-ku, Tokyo, JAPAN hashimoto@isl.im.dendai.ac.jp, hiruma@isl.im.dendai.ac.jp, sasaki@im.dendai.ac.jp

Abstract—Recently, the number of targeted attacks to specific organizations, such as companies or governments, has been increasing. Although such organizations are required to conduct to protect against the attack or mitigate the effect of the targeted attack, it is very difficult to perform the proper operation without the assistance of a support system. Therefore, the authors developed the Live and Intelligent Network Forensic Technologies (LIFT) system to guide the proper operation and/or conduct an automatic operation using artificial intelligence. The LIFT system collects the logs from servers, PCs, and communication equipment such as routers and detects abnormal signs from the collected logs. Next, the Tetsutaro Uehara

Ritsumeikan University 1 Nojihigashi, Kusatsu, Shiga, JAPAN Uehara@cs.ritsumei.ac.jp

to perform the proper operation without the assistance of a support system.

The Security Information and Event Management (SIEM) system has been attracting attention as a support system against targeted attacks [3]. The SIEM system gives real-time security threat detection capabilities to the log management system. Because it performs network forensics in real time, SIEM can be called a live network forensics system. Network forensics secures the evidence of saved collections for an analysis of a log in real time.

However, it is difficult to protect against an attack or mitigate the effect of the attack by using only the SIEM

Cybersec 2015 held in Indonesia

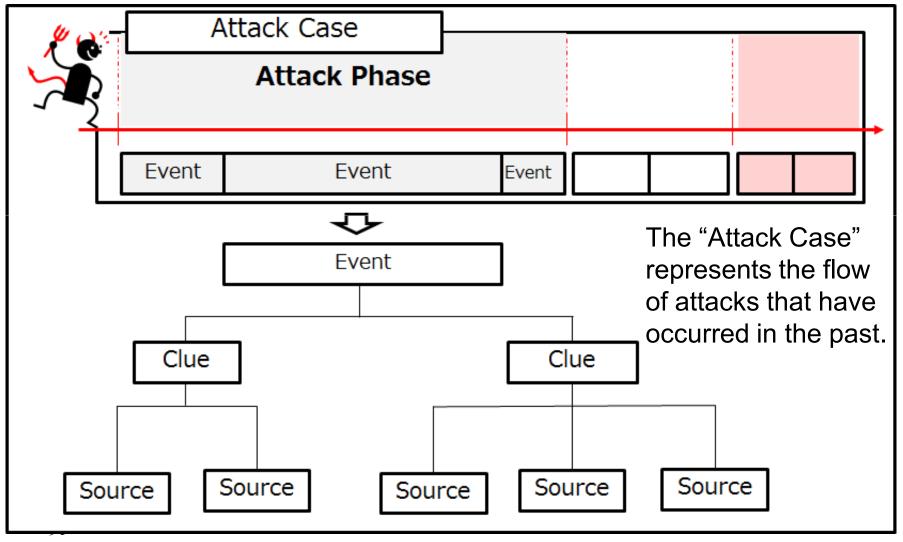
Background

• Targeted attacks have been increasing year by year

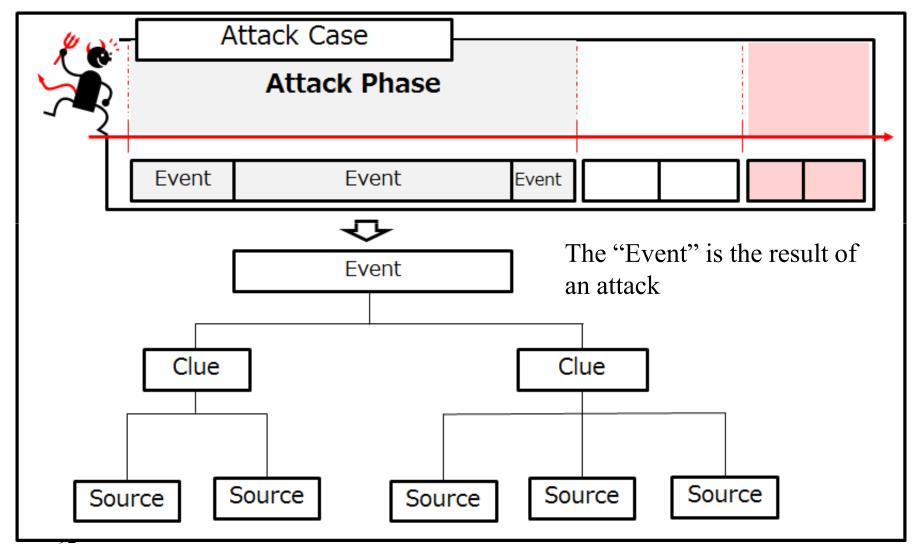
It is difficult to perform proper countermeasures against targeted attacks without the assistance of a support system.

Background

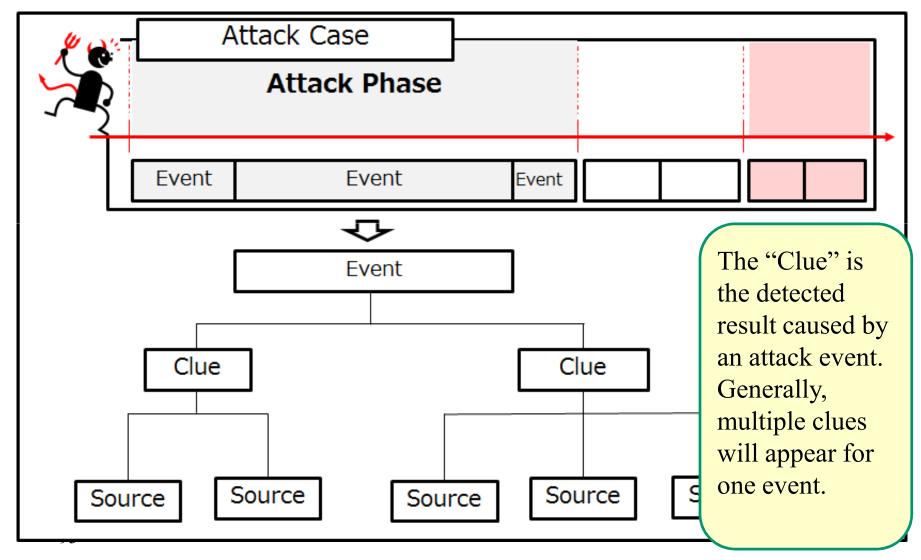
- SIEM attracts the attention
 - The system combines the functions of security event management and log analysis to provide real-time network forensics.
- However
 - It is difficult to protect attack by using only the SIEM system, because operators need enough knowledge and skill to use the system appropriately.

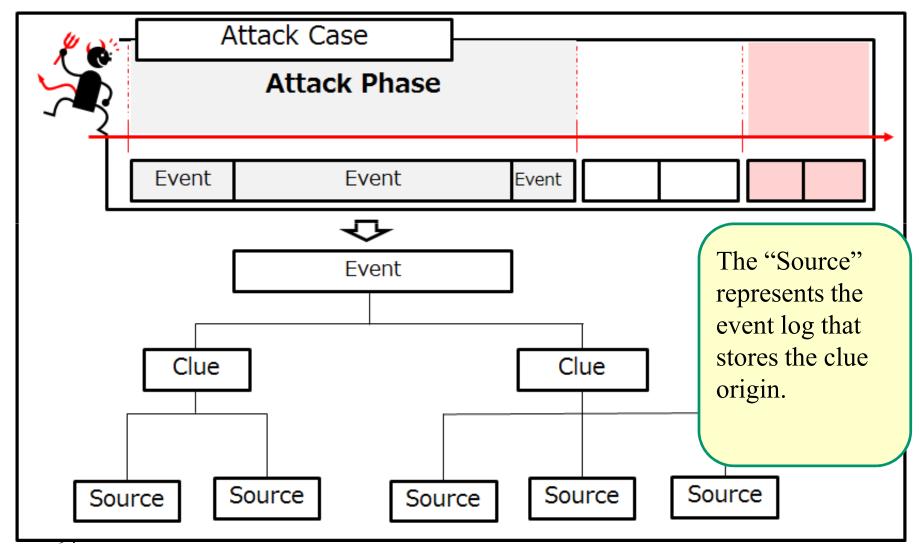

SIEM: Security Information and Event Management

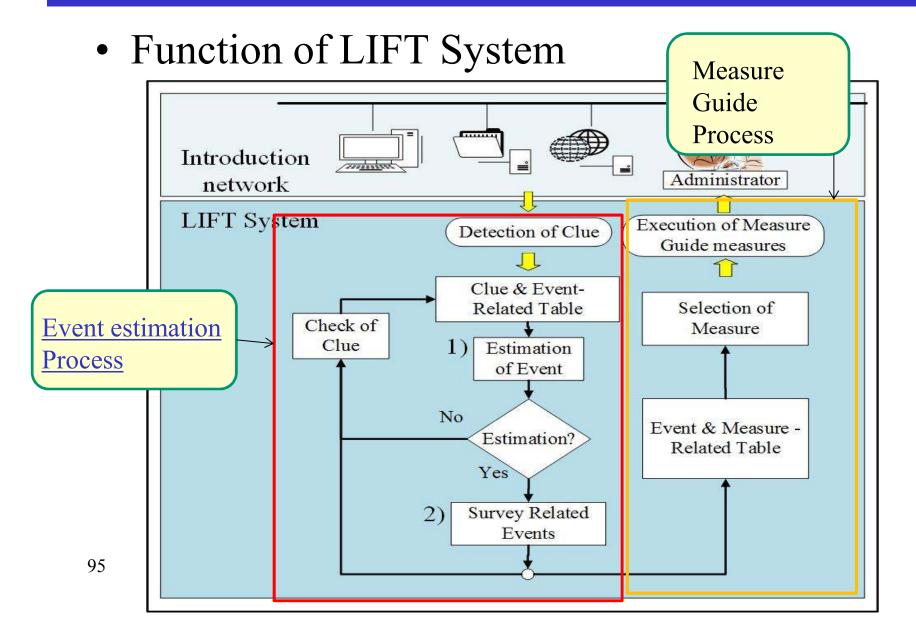
Overview of LIFT Project and System


- To cope with the issue, the LIFT project began at the Cyber Security Research Institute of Tokyo Denki University in 2013.
- In the project, we developed the LIFT system having the function of automatic operation using artificial intelligence(AI) and providing appropriate actions response guidance during incidents

LIFT: Live and Intelligent Network Forensic Technologies


• Attack Structure and LIFT System Terms Used


• The structure of attack and terms used

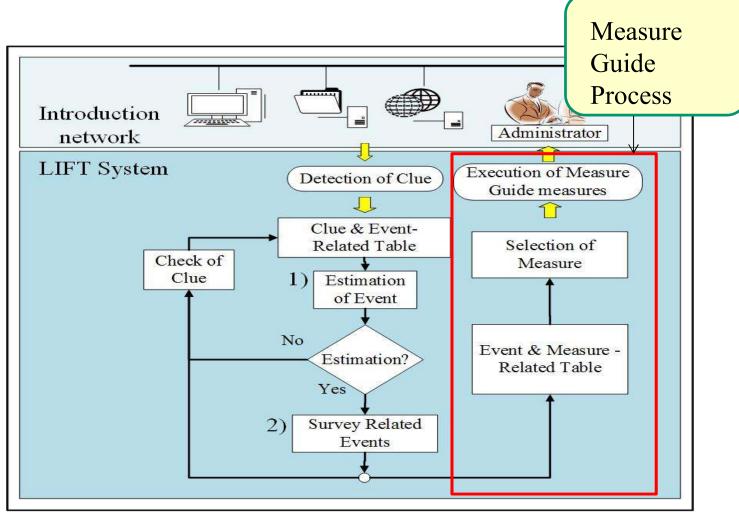

• The structure of attack and terms used


• The structure of attack and terms used

Overview of LIFT System

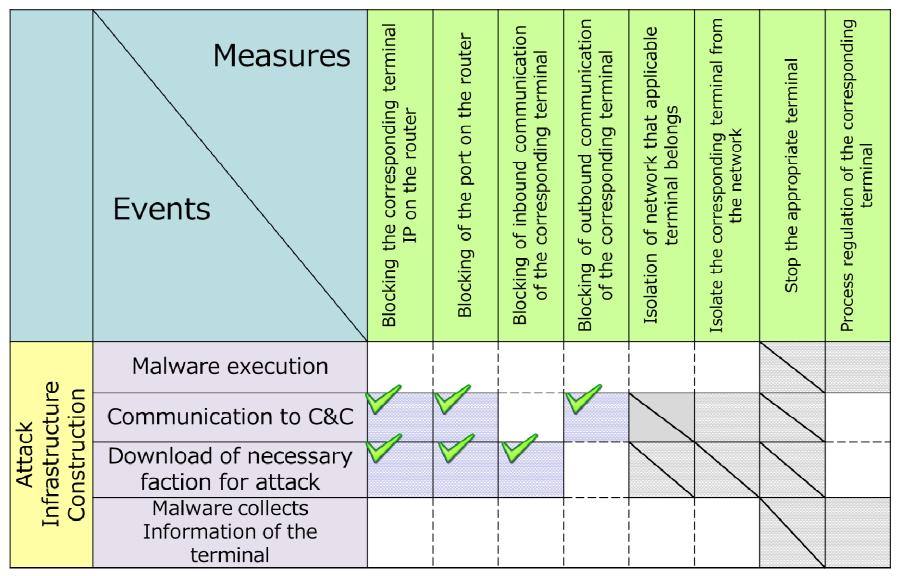
Example of Event and Clue Related Table

Example of Event and Clue Related Table

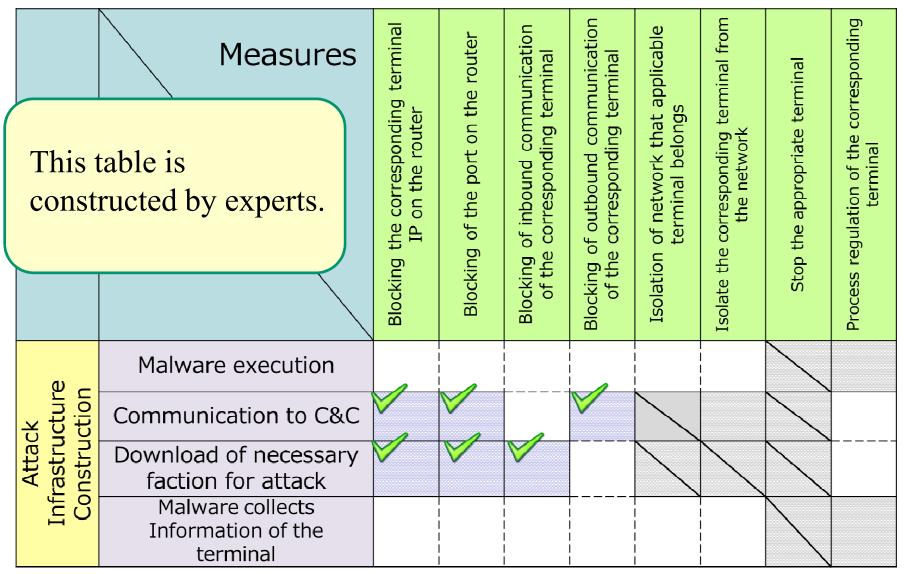

(-	This table	is constructed		Proxy	Server		
t v	by experts what clues	considering appear, when as occurred.	The execution of the suspicious process	Communication without passing proxy	the CONNECT od other than port 443	Long session	Unnecessary commands to business
		Event	The exe suspici	Comr without p	Using the CON method other port 443	Long	Unn commane
	e c	Malware execution	0.3				
	Attack Infrastructure Construction	Communication to C&C	T	0.6	0.6	0.4	
		Download of necessary function for attack	0.4	0.4		0.3	
	Infr Co	Malware collects information of the terminal	0.5			0.2	0.4

	In oper	ation phase, Clues			Proxy	Server		
	are obs If "com passing the pro "Comm	erved.	e	The execution of the suspicious process	Communication without passing proxy	Using the CONNECT method other than port 443	Long session	Unnecessary commands to business
	e c	Maiware execution		0.3				
	ck uctur uctio	Communication to C&C			0.6	0.6	0.4	
	Attack Variable Action of the United the second s		/	0.4	0.4		0.3	
				0.5			0.2	0.4

If the year	lue does not exceed		Proxy	Server		
the thres related to checked. In this ca connect	hold, the other clue the event is	The execution of the suspicious process	Communication without passing proxy	Using the CONNECT method other than port 443	Long session	Unnecessary commands to business
e c	Malware execution	0.3				
ck uctur uctio	Communication to C&C		0.6	0.6	0.4	
Attack Infrastructure Construction	Download of necessary function for attack	0.4	0.4		0.3	
Infr Co	Malware collects information of the terminal	0.5			0.2	0.4


If the both clues occur, the probability is estimated as P=1-(1-0.6)(1-0.6) = 0.84If the probability exceeds the threshold, the LIFT system guides measure to protect "Communication to C&C".

	Event	The ex suspi	Con withou	Using meth	Fo	Comman	
е с	Malware execution	0.3					
ick uctur uctio	Communication to C&C		0.6	0.6	0.4		
Attack Infrastructure Construction	Download of necessary function for attack	0.4	0.4		0.3		
Infr Co	Malware collects information of the terminal	0.5			0.2	0.4	

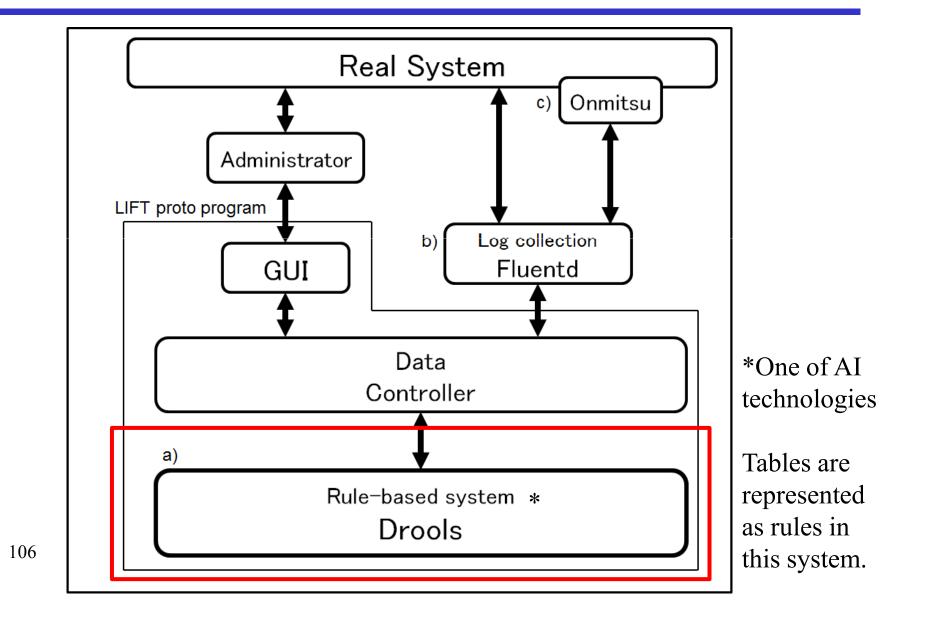


101

Example of Event Measures Related Table

Example of Event Measures Related Table

Example of Event Measures Related Table

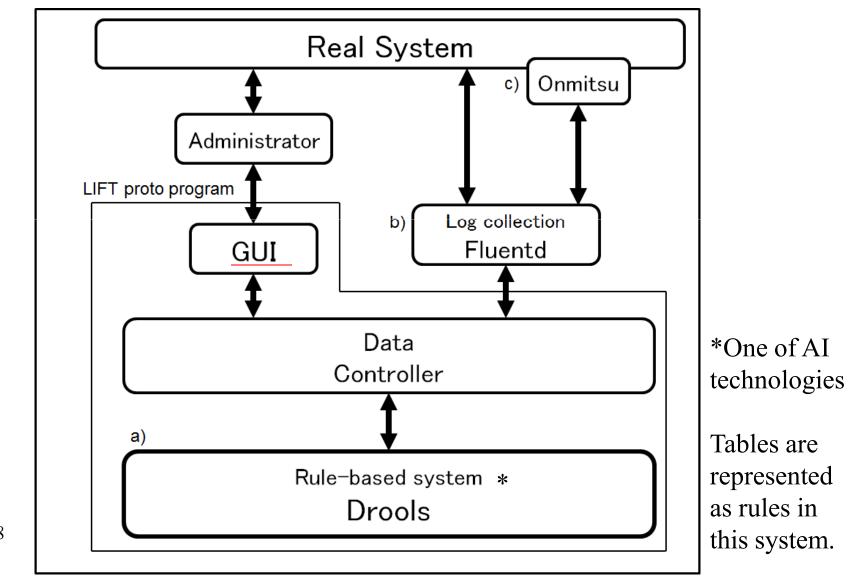

C&C ² event measu	ommunication to " is identified as , these three ures are nmended by LIFT n.	Blocking the corresponding terminal IP on the router	Blocking of the port on the router	Blocking of inbound communication of the corresponding terminal	Blocking of outbound communication of the corresponding terminal	Isolation of network that applicable terminal belongs	Isolate the corresponding terminal from the network	Stop the appropriate terminal	Process regulation of the corresponding terminal
() _	Malware execution		1						
:k ctur∈ ction	Communication to C&C								
Attack Infrastructu Constructio	Download of necessary faction for attack					\sum			
Inf Co	Malware collects Information of the terminal								

LIFT System Development

LIFT proto program was developed under the environments.

Development Element	software
Development software	Eclipse
OS	Ubuntu 14.04
Development language	Java 8
	Domain Specific Language

LIFT System Development

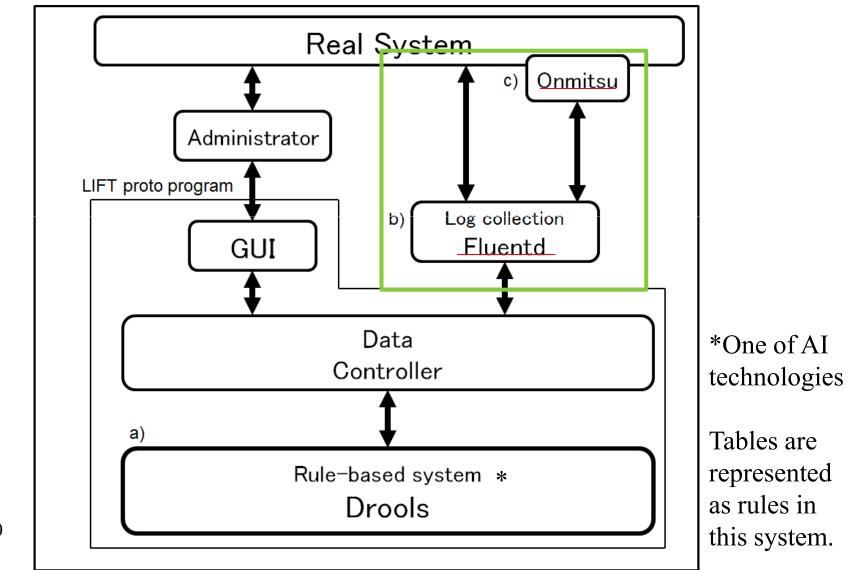


JBOSS Drools

- Rule-based system
- Event Estimation using reasoning
- Implements the rule engine based on the Rete algorithm corresponding to the Java Virtual Machine (JVM)

```
rule "Detect"
    salience 100
    //agenda-group "Fire"
    when
        $s : Core()
        $e : Assumption_Event(Accuracy >= Threequarters_Accuracy && Flag_Detect != 2)
    then
        $e.setFlag_Detect(2);
        $s.GUI_Notification(1,$e.getID(),2);
        update($e);
        update($s);
end
```

LIFT System Development


108

Example of GUI

File: Edit	Help		
\bigcirc	2015年12月19日4時53分31秒 徴候名:機密情報を含んだ遺信の発生 徴候の自動調査を開始しました		
\bigcirc	ガイド表示 詳細を開く		
network	LIFT Status	徴候を調査してください 徴練: 機密情報を含んだ適信の発生 を調査して(ださい)	
log	2015年12月19日4時53分51秒 事象名:攻撃者が攻撃基盤から内部ネッ トワークを探索する		
table view			
+Column	2015年12月19日4時53分50秒 ペイジアンネット	徴候が見つかった場合はFound itを押してください 徴候が見つからなかった場合はNot foundを押してください わからなかった場合は1 don't knowを押してください	
test	ペイジアンネットによる計算の統了 MK	調査を後回しにする場合はLaterを押してください 調べ方が分からない場合はHelpを押すとPDFが表示されます	
	2015年12月19日4時53分50秒 パイジアンネット	Found it Not Found I don't Know Later Help	

¹⁰⁹ GUI in the case that a clue was observed.

LIFT System Development

110

LIFT System Development

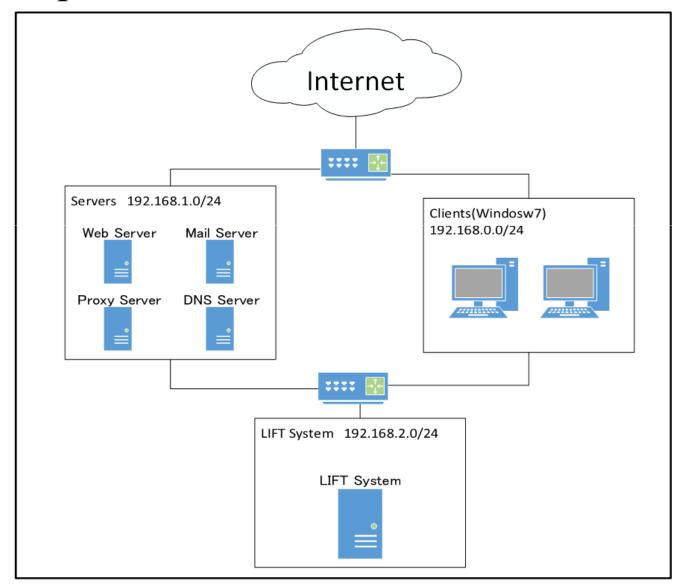
- Fluentd
 - Log collection software
 - Collection of various log
 - Structural log format

- Input log in JavaScript Option Notation (JSON) format
- Onmitsu
 - Detection of the relationship between the network packets and process information in the computer

Application experiment

Purpose:

- Confirm the usefulness of the LIFT system
- Determine whether the LIFT proto program meets the LIFT system requirements.



Experiment

- We prepared six attack events
- Each pseudo attack was launched in the experimental environment 10 times
- The experimental results were compared against estimated attack results

Application experiment

• experimental environment

Application Experiment

• Experimental results ①

Event No.	Simulated attacks and events	Success or failure of estimated Event	Remarks
1	Employees launch malware contained in an email attachment	Success	Event 5 is also estimated
2	Malware communicates with the C&C server	Success	_
3	Malware extracts terminal information	Success	_

Application experiment

Event No.	Simulated attacks and events	Success or failure of estimated Event	Remarks
4	Malware explores the internal network	Success	_
5	Malware explores the internal network	Success	Event 1 is also estimated
6	Malware penetrates servers	Success	_

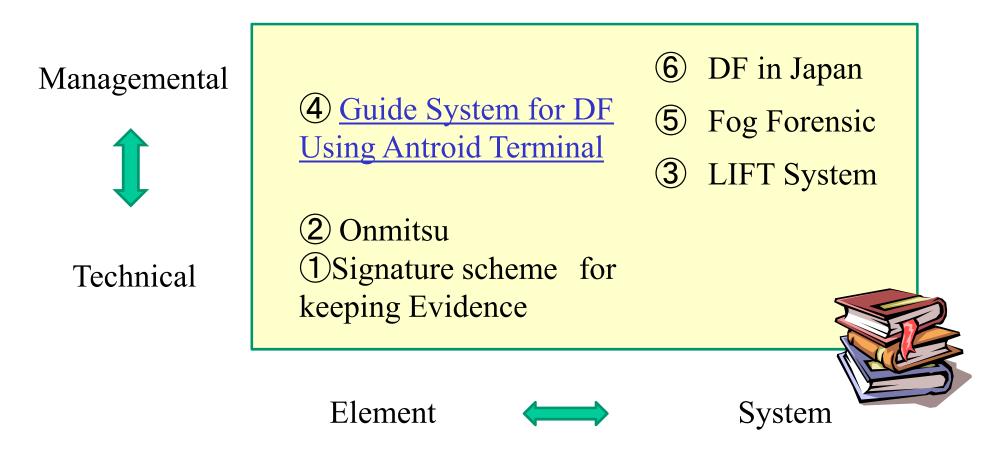
Application Experiment

Experimental results

LIFT proto program could estimate the events in all cases

In two cases, the LIFT proto program estimated multiple events from the clue combinations

To increase estimation accuracy Introduce Bayesian network instead of Event – Clue related table



Recent Status

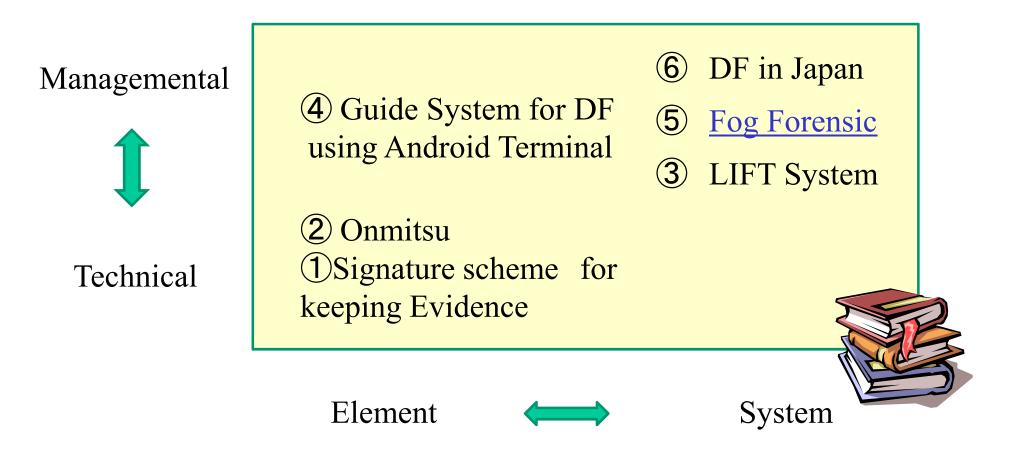
- We introduced a Bayesian network instead of an Event - Clue related table and were able to identify all six events.
- 2. Although we were able to identify events that occurred in the past, it was difficult to identify new type events. To cope with this issue, a multi agent approach was introduced.

Map of Our Main Studies

LIFT: Live and Intelligent Network Forensic Technologies

Extension and Evaluation of Guideline Total Support System for Digital Forensics

Takamichi Amano¹, Tetsutaro Uehara² and Ryoichi Sasaki¹ ¹Tokyo Denki University 5 Senjuasahicho, Adachi-ku, Tokyo 120-8551, Japan amano@isl.im.dendai.ac.jp and sasaki@im.dendai.ac.jp ²Ritsumeikan University, Japan


ABSTRACT

1 INTRODUCTION

The recent rise in disputes relating to electromagnetic computer records has prompted the demand for digital forensic tools that can be used to preserve, investigate, and analyze digital evidence. Among the currently available digital forensic With the expansion of the information society, disputes related to computer electromagnetic records have been increasing. According to a 2013 white paper by the National Police According to a the number of closed

This study was presented at The International Conference on Information Security and Cyber Forensics (InfoSec2014) held in Malaysia.

Map of Our Main Studies

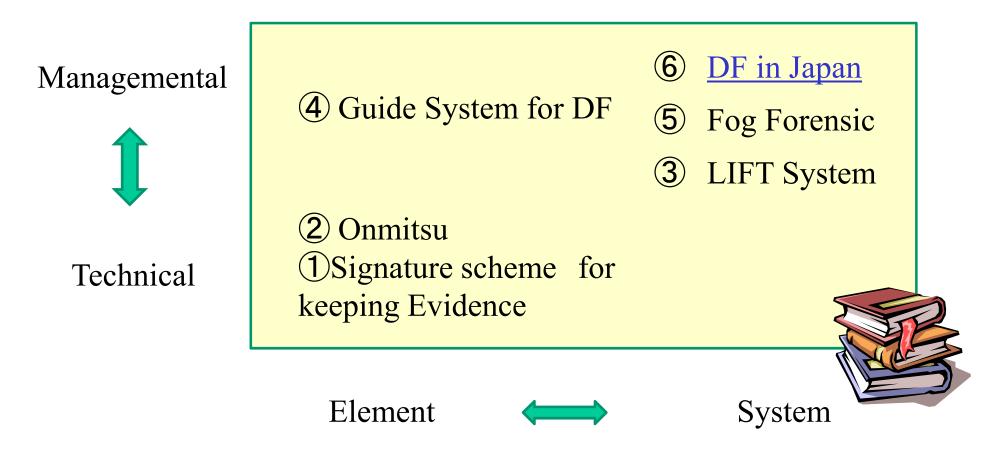
LIFT: Live and Intelligent Network Forensic Technologies

Paper related to Fog Forensics

Fog Computing: Issues and Challenges in Security and Forensics

₽,

₽.


Yifan Wang, Tetsutaro Uehara College of Information Science & Engineering Ritsumeikan University Kusatsu-shi, Shiga, Japan wangyifian@cysec., uehara@{cs.ritsumei.ac.jp}

Abstract—Although Fog Computing is defined as the extension of the Cloud Computing paradigm, its distinctive characteristics in the location sensitivity, wireless connectivity, and geographical accessibility create new security and forensics Ryoichi Sasaki، School of Science and Technology for Future Life، Tokyo Denki University، Adachi-ku, Tokyo, Japan، sasaki@im.dendai.ac.jp

computing briefly. The following section takes a close look at Fog applications in different scenarios. In the fourth section we summarize different approaches to secure the cloud. In the fifth section we discuss the Cloud forensics. Issues and

Presented at COMSAC2015

Map of Our Main Studies

LIFT: Live and Intelligent Network Forensic Technologies

WIRELESS COMMUNICATIONS AND MOBILE COMPUTING Wirel. Commun. Mob. Comput. (2010) Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/wcm.981

SPECIAL ISSUE PAPER

Development of digital forensics practice and research in Japan

Jigang Liu^{1,2}*, Tetsutaroh Uehara¹ and Ryoichi Sasaki³

¹ Kyoto University, Kyoto, Japan

² Metropolitan State University, St. Paul, MN, USA

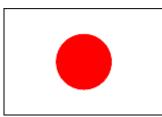
³ Tokyo Denki University, Tokyo, Japan

ABSTRACT

As a new frontier for fighting against cyber crime and cyber terrorism, digital forensics has experienced a rapid development in the last decade. Many countries have created new laws and legal procedures, developed new technologies, and enhanced education and research in this emerging field. Japan is no exception. In this paper, we first provide a nutshell of the Japanese

Paper in 2010

Table of contents


- 1. Self Introduction
- 2. Early History of Digital Forensics in Japan
- 3. Activities on Institute of Digital Forensics
- 4. Introduction of Main Research in Japan
- 5. Digital Forensics Education in Japan
- 6. Major Case Involving Digital Forensics in Japan
- 7. Future Directions

Background starting CySec

• The shortage of security experts is also a big issue in Japan.

Shortage of Security Field Workers in Japan

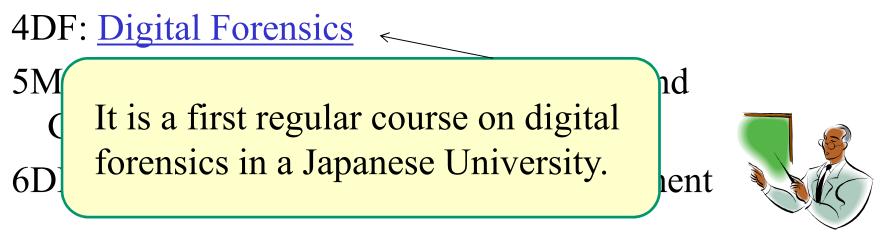
Number of Specialists Required (347,000)

Number of Current Security Field		Short-
Workers (265,000)		fall :
Workers (Skilled) (106,000)	Workers (Unskilled) (159,000)	(82,000)

http://www.ipa.go.jp/files/000040646.pdf July, 2014 IPA: INFORMATION-TECHNOLOGY PROMOTION AGENCY

Overview of CySec

- Tokyo Denki University launched a cyber-security education course named CySec in 2015.
- CySec is a course for Security workers and Master course students.
- It is supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT)


CySec Topics

- 1PF: Cyber Security Infrastructure
- 2CD: Cyber Defense Actual Exercise
- 3IN: Security Intelligence, Psychology, Ethics and Law
- 4DF: Digital Forensics
- 5MG: Information Security Management and Governance
- 6DD: Secure System Design and Development

CySEC

1PF: Cyber Security Infrastructure2CD: Cyber Defense Actual Exercise3IN: Security Intelligence, Psychology, Ethics and Law

Digital Forensics Curriculum in CySec¹

- 1. Introduction of Digital Forensics
- 2. Hard disk structure, File system Technologies
- 3. OS for forensics
- 4. Forensic work basics
- 5. Forensic work, Data conservation
- 6. Forensic work, Data recovery
- 7. Forensic work, Data analysis ①
- 8. Forensic work, Data analysis (2)

Digital Forensics Curriculum in CySec⁽²⁾

- 9. Forensic work exercise
- 10. Network forensic
- 11. Network forensic exercise
- 12. DF methods for typical targets 1
- 13. DF methods for typical targets (2)
- 14. Law literacy and handling court
- 15. Future development of digital forensics

In course of 2016, mobile forensics was added instead of DF methods for typical targets (2)

Lecturers

- (1) Prof. Sasaki (Tokyo Denki Univ.)
- (2) Prof. Uehara (Ritsumei Univ.)
- (3) Prof. Yamaki (Tokyo Denki Univ.)
- (4) Mr. Sakuraba (Lawyer)
- (5) Mr. Shirahama (Forensics Expert)
- (6) Mr. Nozaki (Forensics Expert)

Education Status

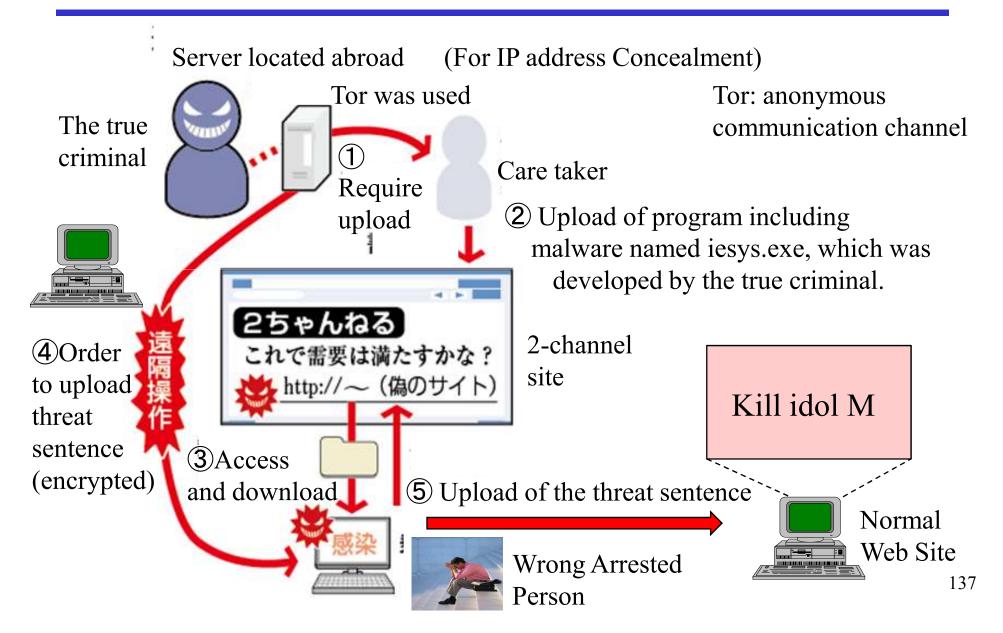
- 1. In 2015, the course was attended by 54 security field workers and 16 Master course students.
- 2. Numerous security experts were among the students.
- 3. Security field workers were sent from police departments, financial services agencies, etc.
- 4. Based on post-course questionnaire results, students were highly satisfied with our lectures.

Future Directions

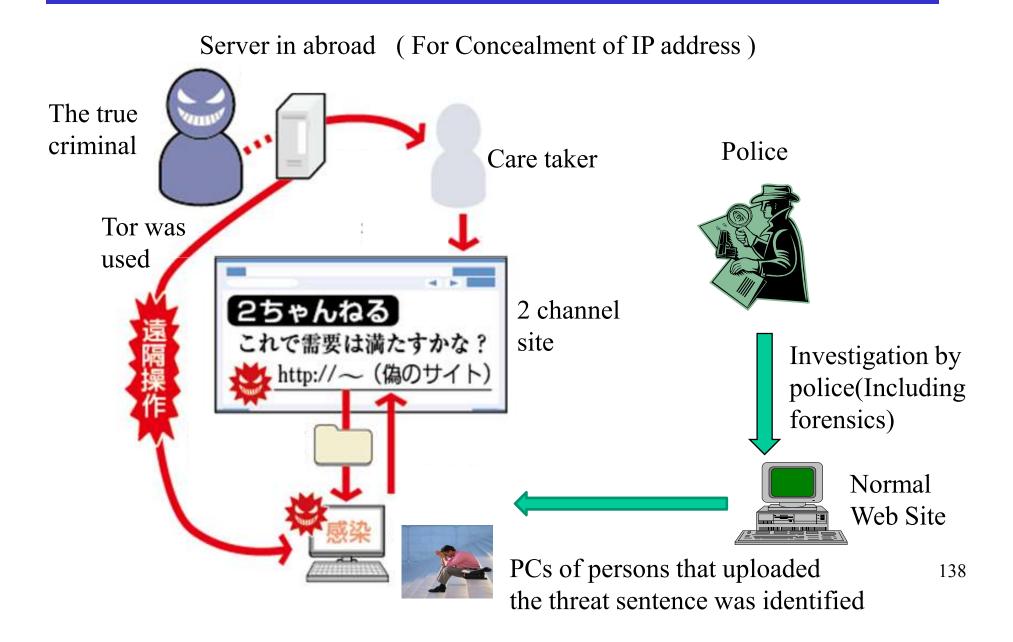
- 1. We will introduce an advanced course on digital forensics to Tokyo Denki University.
- 2. We will support the inauguration of digital forensic courses in other universities.

Table of contents

- 1. Self Introduction
- 2. Early History of Digital Forensics in Japan
- 3. Activities on Institute of Digital Forensics
- 4. Introduction of Main Research in Japan
- 5. Digital Forensics Education in Japan
- 6. <u>Major Case Involving Digital Forensics in</u> <u>Japan</u>
- 7. Future Directions


Improper Arrest Case Related to Remote Control Virus

In 2012, four persons were arrested after being suspected of uploading threats to the Internet.


Later, it became clear that remote control viruses in the suspects' personal computers (PCs) were responsible for the uploading.

Attack Flow

Flow of Investigation

Flow of Investigation

Server in abroad (For Concealment of IP address) (1) Four PC owners were arrested by T^{1} mistake in 2012. Cľ Police One of them was charged with (2)interference and prosecuted. (3) However, malware named iesys.exe was founded in the PCs of the other arrested persons. Part of the same malware was also (4)Investigation by found in the PC of person prosecuted. police(Including The prosecuted person was released. (5)forensics) The search to find the true criminal (6)continued. Normal Web Site

> PCs of persons that uploaded the threat sentence was identified

139

- (1) The following message was sent to mass media on Jan. 1, 2013: *"Happy new year. I am the real criminal. Can the police arrest me?"*
- (2) The second message as follows was sent to mass media: "I have attached a memory chip containing the iesys.exe source program and a text file describing the my objectives to a cat on Enoshima Island"

Photograph of Enoshima

(3) The cat with a memory chip attached to its neck was discovered by the police.

At the same time, the police examined Enoshima surveillance camera image data showing the memory chip being attached to the cat's neck.

(4) A 30-year-old man, hereafter described as "X", was arrested on Feb. 2, 2013.

- (5) Police announced they had found evidence in the suspect's company PC that showed "X" had accessed Tor around the same time when the malware was uploaded via Tor.
- (6) "X" pleaded not guilty. In his appeal, he stated that he could not write the C# used for iesys.exe.

 (7) During the trial, the prosecution's digital forensic expert testified that a piece of the program remained in the <u>slack space</u> of the suspect's PC, thereby providing evidence.

This case marked that the first time deep discussions regarding digital forensics were held in a Japanese court.

- After the suspect was released on bail, he held a press conference with his lawyers on May 16, 2014.
- (2) Around the same time, mail from a person who claimed to be the real criminal was sent to mass media outlets. This convinced many people still that "X" was not the actual criminal.

(3) However, a detective who tailed the suspect after his release witnessed him burying a mobile phone on a riverbank.

When the phone was examined, the police discovered an incriminating sentence, which the suspect had set to be sent out at the same time as the press conference.

Faced with this evidence, "X" confessed to the crime.

(4)) In 2015, the Tokyo District Court has established penalties for 10 cyber-crimes, and announced penal servitude eight years.

(4) In 2015, the Tokyo District Court has established penalties for 10 cyber-crimes, and announced penal servitude eight years.

Digital forensics has become a very important technology in Japan's courts.

Table of contents

- 1. Self Introduction
- 2. Early History of Digital Forensics in Japan
- 3. Activities on Institute of Digital Forensics
- 4. Introduction of Main Research in Japan
- 5. Digital Forensics Education in Japan
- 6. Major Case Involving Digital Forensics in Japan
- 7. Future Directions

Future Direction

- 1. The importance of digital forensics will increase year by year also in Japan.
- 2. We would like to increase the number of digital forensics experts, including researchers.
- 3. Personally, I would like to focus primarily on the following three targets:
 - (1) Network Forensics
 - (2) Live Forensics
 - (3) Fog Forensics

Thank you for your attention

